Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Research ArticleOriginal Article

JaponiconeA induces apoptosis of bortezomib-sensitive and -resistant myeloma cells in vitro and in vivo by targeting IKKβ

Zilu Zhang, Chenjing Ye, Jia Liu, Wenbin Xu, Chao Wu, Qing Yu, Xiaoguang Xu, Xinyi Zeng, Huizi Jin, Yingli Wu and Hua Yan
Cancer Biology & Medicine May 2022, 19 (5) 651-668; DOI: https://doi.org/10.20892/j.issn.2095-3941.2020.0473
Zilu Zhang
1Shanghai Institute of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chenjing Ye
2VIP Health Center, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jia Liu
1Shanghai Institute of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenbin Xu
2VIP Health Center, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chao Wu
2VIP Health Center, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qing Yu
2VIP Health Center, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoguang Xu
1Shanghai Institute of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xinyi Zeng
1Shanghai Institute of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Huizi Jin
3Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yingli Wu
4Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yingli Wu
  • For correspondence: [email protected] [email protected]
Hua Yan
1Shanghai Institute of Hematology, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2VIP Health Center, Affiliated Ruijin Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hua Yan
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Kumar SK,
    2. Rajkumar V,
    3. Kyle RA,
    4. van Duin M,
    5. Sonneveld P,
    6. Mateos M-V, et al.
    Multiple myeloma. Nat Rev Dis Primers. 2017; 3.
  2. 2.↵
    1. Rollig C,
    2. Knop S,
    3. Bornhauser M.
    Multiple myeloma. Lancet. 2015; 385: 2197–208.
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. Matthews GM,
    2. de Matos Simoes R,
    3. Dhimolea E,
    4. Sheffer M,
    5. Gandolfi S,
    6. Dashevsky O, et al.
    Nf-kappab dysregulation in multiple myeloma. Semin Cancer Biol. 2016; 39: 68–76.
    OpenUrlCrossRef
  4. 4.
    1. Li ZW,
    2. Chen H,
    3. Campbell RA,
    4. Bonavida B,
    5. Berenson JR.
    Nf-kappab in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol. 2008; 15: 391–9.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Annunziata CM,
    2. Davis RE,
    3. Demchenko Y,
    4. Bellamy W,
    5. Gabrea A,
    6. Zhan F, et al.
    Frequent engagement of the classical and alternative NF-kappab pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007; 12: 115–30.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Li Q,
    2. Yang G,
    3. Feng M,
    4. Zheng S,
    5. Cao Z,
    6. Qiu J, et al.
    Nf-kappab in pancreatic cancer: its key role in chemoresistance. Cancer Lett. 2018; 421: 127–34.
    OpenUrlCrossRef
  7. 7.
    1. Karin M.
    Nuclear factor-kappab in cancer development and progression. Nature. 2006; 441: 431–6.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.
    1. Seubwai W,
    2. Wongkham C,
    3. Puapairoj A,
    4. Khuntikeo N,
    5. Pugkhem A,
    6. Hahnvajanawong C, et al.
    Aberrant expression of NF-kappaB in liver fluke associated cholangiocarcinoma: implications for targeted therapy. PLoS One. 2014; 9: e106056.
  9. 9.↵
    1. Weniger MA,
    2. Kuppers R.
    NF-kappaB deregulation in hodgkin lymphoma. Semin Cancer Biol. 2016; 39: 32–9.
    OpenUrlCrossRef
  10. 10.↵
    1. Hideshima T,
    2. Ikeda H,
    3. Chauhan D,
    4. Okawa Y,
    5. Raje N,
    6. Podar K, et al.
    Bortezomib induces canonical nuclear factor-kappab activation in multiple myeloma cells. Blood. 2009; 114: 1046–52.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Markovina S,
    2. Callander NS,
    3. O’Connor SL,
    4. Kim J,
    5. Werndli JE,
    6. Raschko M, et al.
    Bortezomib-resistant nuclear factor-kappab activity in multiple myeloma cells. Mol Cancer Res. 2008; 6: 1356–64.
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. Murray MY,
    2. Zaitseva L,
    3. Auger MJ,
    4. Craig JI,
    5. MacEwan DJ,
    6. Rushworth SA, et al.
    Ibrutinib inhibits BTK-driven NF-kappaB p65 activity to overcome bortezomib-resistance in multiple myeloma. Cell Cycle. 2015; 14: 2367–75.
    OpenUrl
  13. 13.↵
    1. Yao Y,
    2. Zhang Y,
    3. Shi M,
    4. Sun Y,
    5. Chen C,
    6. Niu M, et al.
    Blockade of deubiquitinase USP7 overcomes bortezomib resistance by suppressing NF-kappaB signaling pathway in multiple myeloma. J Leukoc Biol. 2018; 104: 1105–15.
    OpenUrl
  14. 14.↵
    1. Clardy J,
    2. Walsh C.
    Lessons from natural molecules. Nature. 2004; 432: 829–37.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Mishra BB,
    2. Tiwari VK.
    Natural products: An evolving role in future drug discovery. Eur J Med Chem. 2011; 46: 4769–807.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Qin JJ,
    2. Jin HZ,
    3. Fu JJ,
    4. Hu XJ,
    5. Wang Y,
    6. Yan SK, et al.
    Japonicones a–d, bioactive dimeric sesquiterpenes from inula japonica thunb. Bioorg Med Chem Lett. 2009; 19: 710–3.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Feng J,
    2. Hu J,
    3. Xia Y.
    Identification of RAD54 homolog B as a promising therapeutic target for breast cancer. Oncol Lett. 2019; 18: 5350–62.
    OpenUrl
  18. 18.↵
    1. Du Y,
    2. Gong J,
    3. Tian X,
    4. Yan X,
    5. Guo T,
    6. Huang M, et al.
    Japonicone a inhibits the growth of non-small cell lung cancer cells via mitochondria-mediated pathways. Tumour Biol. 2015; 36: 7473–82.
    OpenUrl
  19. 19.↵
    1. Li X,
    2. Yang X,
    3. Liu Y,
    4. Gong N,
    5. Yao W,
    6. Chen P, et al.
    Japonicone a suppresses growth of burkitt lymphoma cells through its effect on NF-kappaB. Clin Cancer Res. 2013; 19: 2917–28.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Liu W,
    2. Lu Y,
    3. Chai X,
    4. Liu X,
    5. Zhu T,
    6. Wu X, et al.
    Antitumor activity of TY-011 against gastric cancer by inhibiting aurora A, aurora B and VEGFR2 kinases. J Exp Clin Cancer Res. 2016; 35: 183.
    OpenUrl
  21. 21.↵
    1. Lomenick B,
    2. Hao R,
    3. Jonai N,
    4. Chin RM,
    5. Aghajan M,
    6. Warburton S, et al.
    Target identification using drug affinity responsive target stability (darts). Proc Natl Acad Sci U S A. 2009; 106: 21984–9.
    OpenUrlAbstract/FREE Full Text
  22. 22.
    1. Lomenick B,
    2. Jung G,
    3. Wohlschlegel JA,
    4. Huang J.
    Target identification using drug affinity responsive target stability (darts). Curr Protoc Chem Biol. 2011; 3: 163–80.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Pai MY,
    2. Lomenick B,
    3. Hwang H,
    4. Schiestl R,
    5. McBride W,
    6. Loo JA, et al.
    Drug affinity responsive target stability (darts) for small-molecule target identification. Methods Mol Biol. 2015; 1263: 287–98.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Wang GW,
    2. Qin JJ,
    3. Cheng XR,
    4. Shen YH,
    5. Shan L,
    6. Jin HZ, et al.
    Inula sesquiterpenoids: structural diversity, cytotoxicity and anti-tumor activity. Expert Opin Investig Drugs. 2014; 23: 317–45.
    OpenUrl
  25. 25.↵
    1. Lamb J.
    The connectivity map: a new tool for biomedical research. Nat Rev Cancer. 2007; 7: 54–60.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Cheng J,
    2. Yang L,
    3. Kumar V,
    4. Agarwal P.
    Systematic evaluation of connectivity map for disease indications. Genome Med. 2014; 6: 540.
    OpenUrlPubMed
  27. 27.↵
    1. Jafari R,
    2. Almqvist H,
    3. Axelsson H,
    4. Ignatushchenko M,
    5. Lundback T,
    6. Nordlund P, et al.
    The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc. 2014; 9: 2100–22.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Huynh M,
    2. Pak C,
    3. Markovina S,
    4. Callander NS,
    5. Chng KS,
    6. Wuerzberger-Davis SM, et al.
    Hyaluronan and proteoglycan link protein 1 (hapln1) activates bortezomib-resistant NF-kappaB activity and increases drug resistance in multiple myeloma. J Biol Chem. 2018; 293: 2452–65.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Franqui-Machin R,
    2. Hao M,
    3. Bai H,
    4. Gu Z,
    5. Zhan X,
    6. Habelhah H, et al.
    Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma. J Clin Invest. 2018; 128: 2877–93.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Zhang H,
    2. Zhou L,
    3. Zhou W,
    4. Xie X,
    5. Wu M,
    6. Chen Y, et al.
    EPS8-mediated regulation of multiple myeloma cell growth and survival. Am J Cancer Res. 2019; 9: 1622–34.
    OpenUrl
  31. 31.↵
    1. Prescott JA,
    2. Cook SJ.
    Targeting IKKbeta in cancer: challenges and opportunities for the therapeutic utilisation of IKKbeta inhibitors. Cells. 2018; 7.
  32. 32.↵
    1. Hideshima T,
    2. Neri P,
    3. Tassone P,
    4. Yasui H,
    5. Ishitsuka K,
    6. Raje N, et al.
    MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res. 2006; 12: 5887–94.
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. Prabhu N,
    2. Dai L,
    3. Nordlund P.
    Cetsa in integrated proteomics studies of cellular processes. Curr Opin Chem Biol. 2020; 54: 54–62.
    OpenUrl
PreviousNext
Back to top

In this issue

Cancer Biology & Medicine: 19 (5)
Cancer Biology & Medicine
Vol. 19, Issue 5
15 May 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
JaponiconeA induces apoptosis of bortezomib-sensitive and -resistant myeloma cells in vitro and in vivo by targeting IKKβ
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
JaponiconeA induces apoptosis of bortezomib-sensitive and -resistant myeloma cells in vitro and in vivo by targeting IKKβ
Zilu Zhang, Chenjing Ye, Jia Liu, Wenbin Xu, Chao Wu, Qing Yu, Xiaoguang Xu, Xinyi Zeng, Huizi Jin, Yingli Wu, Hua Yan
Cancer Biology & Medicine May 2022, 19 (5) 651-668; DOI: 10.20892/j.issn.2095-3941.2020.0473

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
JaponiconeA induces apoptosis of bortezomib-sensitive and -resistant myeloma cells in vitro and in vivo by targeting IKKβ
Zilu Zhang, Chenjing Ye, Jia Liu, Wenbin Xu, Chao Wu, Qing Yu, Xiaoguang Xu, Xinyi Zeng, Huizi Jin, Yingli Wu, Hua Yan
Cancer Biology & Medicine May 2022, 19 (5) 651-668; DOI: 10.20892/j.issn.2095-3941.2020.0473
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and methods
    • Results
    • Discussion
    • Conclusions
    • Supporting Information
    • Grant support
    • Conflict of interest statement
    • Author contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Cancer risk in relatives of BRCA1/2 pathogenic variant carriers in a large series of unselected patients with breast cancer
  • Association between homologous recombination deficiency and outcomes with platinum and platinum-free chemotherapy in patients with triple-negative breast cancer
  • Current treatment paradigm and survival outcomes among patients with newly diagnosed multiple myeloma in China: a retrospective multicenter study
Show more Original Article

Similar Articles

Keywords

  • Multiple myeloma
  • NF-κB
  • JaponiconeA
  • bortezomib
  • drug resistance

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2023 Cancer Biology & Medicine

Powered by HighWire