Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Methods for monitoring cancer cell pyroptosis

Shuo Wang, Yuantong Liu, Lu Zhang and Zhijun Sun
Cancer Biology & Medicine April 2022, 19 (4) 398-414; DOI: https://doi.org/10.20892/j.issn.2095-3941.2021.0504
Shuo Wang
1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuantong Liu
1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lu Zhang
1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lu Zhang
  • For correspondence: [email protected] [email protected]
Zhijun Sun
1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
2Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zhijun Sun
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Hodi FS,
    2. O’Day SJ,
    3. McDermott DF,
    4. Weber RW,
    5. Sosman JA,
    6. Haanen JB, et al.
    Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363: 711–23.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Tumeh PC,
    2. Harview CL,
    3. Yearley JH,
    4. Shintaku IP,
    5. Taylor EJ,
    6. Robert L, et al.
    PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515: 568–71.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Chen DS,
    2. Mellman I.
    Elements of cancer immunity and the cancer-immune set point. Nature. 2017; 541: 321–30.
    OpenUrlCrossRefPubMed
  4. 4.
    1. Tang H,
    2. Li H,
    3. Sun Z.
    Targeting myeloid-derived suppressor cells for cancer therapy. Cancer Biol Med. 2021; Doi: 10.20892/j.issn.2095-3941.2020.0806.
    OpenUrlAbstract/FREE Full Text
  5. 5.
    1. Xu Z,
    2. Huang X.
    Cellular immunotherapy for hematological malignancy: recent progress and future perspectives. Cancer Biol Med. 2021; Doi: 10.20892/j.issn.2095-3941.2020.0801.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Hegde PS,
    2. Chen DS.
    Top 10 challenges in cancer immunotherapy. Immunity. 2020; 52: 17–35.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Bertheloot D,
    2. Latz E,
    3. Franklin BS.
    Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021; 18: 1106–21.
    OpenUrlCrossRef
  8. 8.↵
    1. Hanahan D,
    2. Weinberg RA.
    Hallmarks of cancer: the next generation. Cell. 2011; 144: 646.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.↵
    1. Broz P,
    2. Pelegrín P,
    3. Shao F.
    The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020; 20: 143–57.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Friedlander A.
    Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem. 1986; 261: 7123–6.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. Brennan M,
    2. Cookson B.
    Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol. 2000; 38: 31–40.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Cookson BT,
    2. Brennan MA.
    Pro-inflammatory programmed cell death. Trends Microbiol. 2001; 9: 113–4.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Boise LH,
    2. Collins CM.
    Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol. 2001; 9: 64–7.
    OpenUrlCrossRefPubMedWeb of Science
  14. 14.↵
    1. Kayagaki N,
    2. Warming S,
    3. Lamkanfi M,
    4. Vande Walle L,
    5. Louie S,
    6. Dong J, et al.
    Non-canonical inflammasome activation targets caspase-11. Nature. 2011; 479: 117–21.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Shi J,
    2. Zhao Y,
    3. Wang Y,
    4. Gao W,
    5. Ding J,
    6. Li P, et al.
    Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014; 514: 187–92.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Shi J,
    2. Zhao Y,
    3. Wang K,
    4. Shi X,
    5. Wang Y,
    6. Huang H, et al.
    Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015; 526: 660–5.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Kayagaki N,
    2. Stowe I,
    3. Lee B,
    4. O’Rourke K,
    5. Anderson K,
    6. Warming S, et al.
    Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015; 526: 666–71.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. He W,
    2. Wan H,
    3. Hu L,
    4. Chen P,
    5. Wang X,
    6. Huang Z, et al.
    Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015; 25: 1285–98.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Liu X,
    2. Zhang Z,
    3. Ruan J,
    4. Pan Y,
    5. Magupalli V,
    6. Wu H, et al.
    Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016; 535: 153–8.
    OpenUrlCrossRefPubMed
  20. 20.
    1. Ding J,
    2. Wang K,
    3. Liu W,
    4. She Y,
    5. Sun Q,
    6. Shi J, et al.
    Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016; 535: 111–6.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Chen X,
    2. He W,
    3. Hu L,
    4. Li J,
    5. Fang Y,
    6. Wang X, et al.
    Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 2016; 26: 1007–20.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Aglietti R,
    2. Estevez A,
    3. Gupta A,
    4. Ramirez M,
    5. Liu P,
    6. Kayagaki N, et al.
    GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A. 2016; 113: 7858–63.
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. Wang Y,
    2. Gao W,
    3. Shi X,
    4. Ding J,
    5. Liu W,
    6. He H, et al.
    Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017; 547: 99–103.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Wu D,
    2. Wang S,
    3. Yu G,
    4. Chen X.
    Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: prospects for cancer therapy. Angew Chem Int Ed. 2020; 60: 8018–34.
    OpenUrl
  25. 25.↵
    1. Yu P,
    2. Zhang X,
    3. Liu N,
    4. Tang L,
    5. Peng C,
    6. Chen X.
    Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021; 6: 128.
    OpenUrl
  26. 26.↵
    1. Wang M,
    2. Jiang S,
    3. Zhang Y,
    4. Li P,
    5. Wang K.
    The multifaceted roles of pyroptotic cell death pathways in cancer. Cancers. 2019; 11: 1313.
    OpenUrl
  27. 27.↵
    1. Wang Q,
    2. Wang Y,
    3. Ding J,
    4. Wang C,
    5. Zhou X,
    6. Gao W, et al.
    A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020; 579: 421–6.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Lamkanfi M,
    2. Dixit VM.
    Mechanisms and functions of inflammasomes. Cell. 2014; 157: 1013–22.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Lugrin J,
    2. Martinon F.
    The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev. 2018; 281: 99–114.
    OpenUrlCrossRefPubMed
  30. 30.
    1. Miao EA,
    2. Leaf IA,
    3. Treuting PM,
    4. Mao DP,
    5. Dors M,
    6. Sarkar A, et al.
    Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010; 11: 1136–42.
    OpenUrlCrossRefPubMedWeb of Science
  31. 31.
    1. Broz P,
    2. Dixit V.
    Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016; 16: 407–20.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Vanaja S,
    2. Rathinam V,
    3. Fitzgerald K.
    Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015; 25: 308–15.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Boucher D,
    2. Monteleone M,
    3. Coll R,
    4. Chen K,
    5. Ross C,
    6. Teo J, et al.
    Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med. 2018; 215: 827–40.
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. Miao EA,
    2. Mao DP,
    3. Yudkovsky N,
    4. Bonneau R,
    5. Lorang CG,
    6. Warren SE, et al.
    Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010; 107: 3076–80.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Sborgi L,
    2. Rühl S,
    3. Mulvihill E,
    4. Pipercevic J,
    5. Heilig R,
    6. Stahlberg H, et al.
    GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016; 35: 1766–78.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Yang J,
    2. Liu Z,
    3. Wang C,
    4. Yang R,
    5. Rathkey J,
    6. Pinkard O, et al.
    Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc Natl Acad Sci U S A. 2018; 115: 6792–7.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Xia S,
    2. Zhang Z,
    3. Magupalli V,
    4. Pablo J,
    5. Dong Y,
    6. Vora S, et al.
    Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 2021; 593: 607–11.
    OpenUrl
  38. 38.↵
    1. Baker PJ,
    2. Boucher D,
    3. Bierschenk D,
    4. Tebartz C,
    5. Whitney PG,
    6. D’Silva DB, et al.
    NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur J Immunol. 2015; 45: 2918–26.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Rühl S,
    2. Broz P.
    Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. Eur J Immunol. 2015; 45: 2927–36.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Davis M,
    2. Fairgrieve M,
    3. Den Hartigh A,
    4. Yakovenko O,
    5. Duvvuri B,
    6. Lood C, et al.
    Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation. Proc Natl Acad Sci U S A. 2019; 116: 5061–70.
    OpenUrlAbstract/FREE Full Text
  41. 41.↵
    1. Rühl S,
    2. Shkarina K,
    3. Demarco B,
    4. Heilig R,
    5. Santos J,
    6. Broz P.
    ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science. 2018; 362: 956–60.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Yang D,
    2. He Y,
    3. Muñoz-Planillo R,
    4. Liu Q,
    5. Núñez G.
    Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity. 2015; 43: 923–32.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Chen K,
    2. Demarco B,
    3. Broz P.
    Pannexin-1 promotes NLRP3 activation during apoptosis but is dispensable for canonical or noncanonical inflammasome activation. Eur J Immunol. 2020; 50: 170–7.
    OpenUrl
  44. 44.↵
    1. Chen K,
    2. Demarco B,
    3. Heilig R,
    4. Shkarina K,
    5. Boettcher A,
    6. Farady C, et al.
    Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. 2019; 38: e101638.
  45. 45.↵
    1. Evavold C,
    2. Hafner-Bratkovič I,
    3. Devant P,
    4. D’Andrea J,
    5. Ngwa E,
    6. Boršić E, et al.
    Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell. 2021; 184: 4495–511.
    OpenUrlCrossRef
  46. 46.↵
    1. Rogers C,
    2. Fernandes-Alnemri T,
    3. Mayes L,
    4. Alnemri D,
    5. Cingolani G,
    6. Alnemri E.
    Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017; 8: 14128.
  47. 47.↵
    1. Orning P,
    2. Weng D,
    3. Starheim K,
    4. Ratner D,
    5. Best Z,
    6. Lee B, et al.
    Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018; 362: 1064–9.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Sarhan J,
    2. Liu BC,
    3. Muendlein HI,
    4. Li P,
    5. Nilson R,
    6. Tang AY, et al.
    Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A. 2018; 115: E10888–97.
    OpenUrlAbstract/FREE Full Text
  49. 49.↵
    1. Zheng Z,
    2. Deng W,
    3. Bai Y,
    4. Miao R,
    5. Liu X.
    The lysosomal Rag-Ragulator complex licenses RIPK1– and caspase-8–mediated pyroptosis by yersinia. Science. 2021; 372: eabg0269.
  50. 50.↵
    1. Hou J,
    2. Zhao R,
    3. Xia W,
    4. Chang CW,
    5. You Y,
    6. Hsu JM, et al.
    PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020; 22: 1264–75.
    OpenUrl
  51. 51.↵
    1. Zhou Z,
    2. He H,
    3. Wang K,
    4. Shi X,
    5. Wang Y,
    6. Su Y, et al.
    Granzyme a from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020; 368: eaaz7548.
  52. 52.
    1. Liu Y,
    2. Fang Y,
    3. Chen X,
    4. Wang Z,
    5. Liang X,
    6. Zhang T, et al.
    Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol. 2020; 5: eaax7969.
  53. 53.↵
    1. Zhang Z,
    2. Zhang Y,
    3. Xia S,
    4. Kong Q,
    5. Li S,
    6. Liu X, et al.
    Gasdermin e suppresses tumour growth by activating anti-tumour immunity. Nature. 2020; 579: 415–20.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Snyder AG,
    2. Oberst A.
    The antisocial network: cross talk between cell death programs in host defense. Annu Rev Immunol. 2021; 39: 77–101.
    OpenUrl
  55. 55.↵
    1. Fink S,
    2. Cookson B.
    Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005; 73: 1907–16.
    OpenUrlFREE Full Text
  56. 56.↵
    1. Galluzzi L,
    2. Vitale I,
    3. Aaronson SA,
    4. Abrams JM,
    5. Adam D,
    6. Agostinis P, et al.
    Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018; 25: 486–541.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Kesavardhana S,
    2. Malireddi RKS,
    3. Kanneganti TD.
    Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol. 2020; 38: 567–95.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Jorgensen I,
    2. Miao EA.
    Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015; 265: 130–42.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Bergsbaken T,
    2. Cookson BT.
    Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 2007; 3: e161.
  60. 60.↵
    1. Tsuchiya K.
    Switching from apoptosis to pyroptosis: gasdermin-elicited inflammation and antitumor immunity. Int J Mol Sci. 2021; 22: 426.
    OpenUrl
  61. 61.↵
    1. Frank D,
    2. Vince J.
    Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019; 26: 99–114.
    OpenUrlCrossRefPubMed
  62. 62.↵
    1. Kaiser WJ,
    2. Upton JW,
    3. Long AB,
    4. Livingston-Rosanoff D,
    5. Daley-Bauer LP,
    6. Hakem R, et al.
    RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 2011; 471: 368–72.
    OpenUrlCrossRefPubMedWeb of Science
  63. 63.↵
    1. Oberst A,
    2. Dillon CP,
    3. Weinlich R,
    4. McCormick LL,
    5. Fitzgerald P,
    6. Pop C, et al.
    Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011; 471: 363–7.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.↵
    1. Li Z,
    2. Huang Z,
    3. Zhang H,
    4. Lu J,
    5. Tian Y,
    6. Wei Y, et al.
    P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk. Oxid Med Cell Longev. 2021; 2021: 8868361.
  65. 65.↵
    1. Xie W,
    2. Ding J,
    3. Xie X,
    4. Yang X,
    5. Wu X,
    6. Chen Z, et al.
    Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation. Inflamm Res. 2020; 69: 683–96.
    OpenUrlCrossRef
  66. 66.↵
    1. Yang W,
    2. Liu S,
    3. Li Y,
    4. Wang Y,
    5. Deng Y,
    6. Sun W, et al.
    Pyridoxine induces monocyte-macrophages death as specific treatment of acute myeloid leukemia. Cancer Lett. 2020; 492: 96–105.
    OpenUrl
  67. 67.↵
    1. Hu JJ,
    2. Liu X,
    3. Xia S,
    4. Zhang Z,
    5. Zhang Y,
    6. Zhao J, et al.
    FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020; 21: 736–45.
    OpenUrlCrossRefPubMed
  68. 68.↵
    1. Xia S,
    2. Ruan J,
    3. Wu H.
    Monitoring gasdermin pore formation in vitro. Methods Enzymol. 2019; 625: 95–107.
    OpenUrl
  69. 69.↵
    1. Mulvihill E,
    2. Sborgi L,
    3. Mari S,
    4. Pfreundschuh M,
    5. Hiller S,
    6. Müller D.
    Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 2018; 37: e98321.
  70. 70.↵
    1. Liu Y,
    2. Zhang T,
    3. Zhou Y,
    4. Li J,
    5. Liang X,
    6. Zhou N, et al.
    Visualization of perforin/gasdermin/complement-formed pores in real cell membranes using atomic force microscopy. Cell Mol Immunol. 2019; 16: 611–20.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Liu L,
    2. Sha R,
    3. Yang L,
    4. Zhao X,
    5. Zhu Y,
    6. Gao J, et al.
    Impact of morphology on iron oxide nanoparticles-induced inflammasome activation in macrophages. ACS Appl Mater Inter. 2018; 10: 41197–206.
    OpenUrl
  72. 72.↵
    1. Du Q,
    2. Ge D,
    3. Mirshafiee V,
    4. Chen C,
    5. Li M,
    6. Xue C, et al.
    Assessment of neurotoxicity induced by different-sized stober silica nanoparticles: induction of pyroptosis in microglia. Nanoscale. 2019; 11: 12965–72.
    OpenUrl
  73. 73.↵
    1. Duan WR,
    2. Garner DS,
    3. Williams SD,
    4. Funckes-Shippy CL,
    5. Spath IS,
    6. Blomme EA.
    Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol. 2003; 199: 221–8.
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.↵
    1. Jiang L,
    2. Poon I.
    Methods for monitoring the progression of cell death, cell disassembly and cell clearance. Apoptosis. 2019; 24: 208–20.
    OpenUrl
  75. 75.↵
    1. Volchuk A,
    2. Ye A,
    3. Chi L,
    4. Steinberg BE,
    5. Goldenberg NM.
    Indirect regulation of HMGB1 release by gasdermin D. Nat Commun. 2020; 11: 4561.
    OpenUrlCrossRef
  76. 76.↵
    1. Russo AJ,
    2. Vasudevan SO,
    3. Mendez-Huergo SP,
    4. Kumari P,
    5. Menoret A,
    6. Duduskar S, et al.
    Intracellular immune sensing promotes inflammation via gasdermin D-driven release of a lectin alarmin. Nat Immunol. 2021; 22: 154–65.
    OpenUrl
  77. 77.↵
    1. Mirshafiee V,
    2. Sun B,
    3. Chang C,
    4. Liao Y,
    5. Jiang W,
    6. Jiang J, et al.
    Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano. 2018; 12: 3836–52.
    OpenUrl
  78. 78.↵
    1. Garrod KR,
    2. Moreau HD,
    3. Garcia Z,
    4. Lemaitre F,
    5. Bouvier I,
    6. Albert ML, et al.
    Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis. Cell Rep. 2012; 2: 1438–47.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Posson DJ,
    2. Rusinova R,
    3. Andersen OS,
    4. Nimigean CM.
    Stopped-flow fluorometric ion flux assay for ligand-gated ion channel studies. Methods Mol Biol. 2018; 1684: 223–35.
    OpenUrlCrossRef
  80. 80.↵
    1. Zhang C,
    2. Li C,
    3. Wang Y,
    4. Xu L,
    5. He X,
    6. Zeng Q, et al.
    Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis. 2019; 24: 312–25.
    OpenUrlCrossRef
  81. 81.↵
    1. Wang Y,
    2. Yin B,
    3. Li D,
    4. Wang G,
    5. Han X,
    6. Sun X.
    GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun. 2018; 495: 1418–25.
    OpenUrlCrossRef
  82. 82.↵
    1. Galluzzi L,
    2. Kroemer G.
    Secondary necrosis: accidental no more. Trends Cancer. 2017; 3: 1–2.
    OpenUrl
  83. 83.↵
    1. Fink SL,
    2. Cookson BT.
    Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006; 8: 1812–25.
    OpenUrlCrossRefPubMedWeb of Science
  84. 84.↵
    1. Ploetz E,
    2. Zimpel A,
    3. Cauda V,
    4. Bauer D,
    5. Lamb D,
    6. Haisch C, et al.
    Metal-organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular PH. Adv Mater. 2020; 32: e1907267.
  85. 85.↵
    1. Bedoui S,
    2. Herold M,
    3. Strasser A.
    Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020; 21: 678–95.
    OpenUrl
  86. 86.↵
    1. Lu Y,
    2. Xu S,
    3. Chen H,
    4. He M,
    5. Deng Y,
    6. Cao Z, et al.
    CdSe/ZnS quantum dots induce hepatocyte pyroptosis and liver inflammation via NLRP3 inflammasome activation. Biomaterials. 2016; 90: 27–39.
    OpenUrl
  87. 87.↵
    1. Wang D,
    2. Zheng J,
    3. Hu Q,
    4. Zhao C,
    5. Chen Q,
    6. Shi P, et al.
    Magnesium protects against sepsis by blocking gasdermin D N-terminal-induced pyroptosis. Cell Death Differ. 2020; 27: 466–81.
    OpenUrl
  88. 88.↵
    1. Zhao P,
    2. Wang M,
    3. Chen M,
    4. Chen Z,
    5. Peng X,
    6. Zhou F, et al.
    Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials. 2020; 254: 120142.
  89. 89.↵
    1. Wang K,
    2. Sun Q,
    3. Zhong X,
    4. Zeng M,
    5. Zeng H,
    6. Shi X, et al.
    Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell. 2020; 180: 941–55 e20.
    OpenUrlCrossRefPubMed
  90. 90.↵
    1. Vanden Berghe T,
    2. Grootjans S,
    3. Goossens V,
    4. Dondelinger Y,
    5. Krysko DV,
    6. Takahashi N, et al.
    Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods. 2013; 61: 117–29.
    OpenUrlCrossRefPubMed
  91. 91.↵
    1. Muendlein H,
    2. Jetton D,
    3. Connolly W,
    4. Eidell K,
    5. Magri Z,
    6. Smirnova I, et al.
    cFLIPL protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science. 2020; 367: 1379–84.
    OpenUrlAbstract/FREE Full Text
  92. 92.↵
    1. Ruan J,
    2. Wang S,
    3. Wang J.
    Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact. 2020; 323: 109052.
  93. 93.↵
    1. Galon J,
    2. Bruni D.
    Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019; 18: 197–218.
    OpenUrlPubMed
  94. 94.↵
    1. Liu Y,
    2. Sun Z.
    Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021; 11: 5365–86.
    OpenUrl
  95. 95.↵
    1. Karki R,
    2. Sharma B,
    3. Tuladhar S,
    4. Williams E,
    5. Zalduondo L,
    6. Samir P, et al.
    Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021; 184: 149–68.e17.
    OpenUrlCrossRefPubMed
  96. 96.↵
    1. Moossavi M,
    2. Parsamanesh N,
    3. Bahrami A,
    4. Atkin SL,
    5. Sahebkar A.
    Role of the NLRP3 inflammasome in cancer. Mol Cancer. 2018; 17: 158.
    OpenUrlCrossRefPubMed
  97. 97.↵
    1. Humphries F,
    2. Shmuel-Galia L,
    3. Ketelut-Carneiro N,
    4. Li S,
    5. Wang B,
    6. Nemmara VV, et al.
    Succination inactivates gasdermin D and blocks pyroptosis. Science. 2020; 369: 1633–7.
    OpenUrlAbstract/FREE Full Text
  98. 98.↵
    1. Alvero AB,
    2. Mor GG.
    Detection of cell death mechanisms: methods and protocols. Methods Mol Biol. 2021; 2255: 149–57.
    OpenUrl
  99. 99.↵
    1. Mesa K,
    2. Rompolas P,
    3. Zito G,
    4. Myung P,
    5. Sun T,
    6. Brown S, et al.
    Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature. 2015; 522: 94–7.
    OpenUrlCrossRefPubMed
  100. 100.↵
    1. Mayer C,
    2. Gazumyan A,
    3. Kara E,
    4. Gitlin A,
    5. Golijanin J,
    6. Viant C, et al.
    The microanatomic segregation of selection by apoptosis in the germinal center. Science. 2017; 358: eaao2602.
  101. 101.↵
    1. Li Q,
    2. Shi N,
    3. Cai C,
    4. Zhang M,
    5. He J,
    6. Tan Y, et al.
    The role of mitochondria in pyroptosis. Front Cell Dev Biol. 2020; 8: 630771.
PreviousNext
Back to top

In this issue

Cancer Biology & Medicine: 19 (4)
Cancer Biology & Medicine
Vol. 19, Issue 4
15 Apr 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Methods for monitoring cancer cell pyroptosis
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Methods for monitoring cancer cell pyroptosis
Shuo Wang, Yuantong Liu, Lu Zhang, Zhijun Sun
Cancer Biology & Medicine Apr 2022, 19 (4) 398-414; DOI: 10.20892/j.issn.2095-3941.2021.0504

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Methods for monitoring cancer cell pyroptosis
Shuo Wang, Yuantong Liu, Lu Zhang, Zhijun Sun
Cancer Biology & Medicine Apr 2022, 19 (4) 398-414; DOI: 10.20892/j.issn.2095-3941.2021.0504
Digg logo Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Molecular mechanisms of pyroptosis
    • The differences between pyroptosis, apoptosis, and necroptosis
    • Methods for monitoring pyroptosis
    • Conclusions
    • Grant support
    • Conflict of interest statement
    • Author contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Eliciting pyroptosis to fuel cancer immunotherapy: mechanisms and strategies
  • Living biobank-based cancer organoids: prospects and challenges in cancer research
  • Anti-tumor pharmacology of natural products targeting mitosis
Show more Review

Similar Articles

Keywords

  • Pyroptosis
  • gasdermin
  • caspase
  • cancer immunotherapy
  • cell death

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2022 Cancer Biology & Medicine

Powered by HighWire