Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
    • Announcement
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma

Kim Teresa, Rodabe N. Amaria, Christine Spencer, Alexandre Reuben, Zachary A. Cooper and Jennifer A. Wargo
Cancer Biology & Medicine December 2014, 11 (4) 237-246; DOI: https://doi.org/10.7497/j.issn.2095-3941.2014.04.002
Kim Teresa
1Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
2Harvard Medical School, Boston, MA 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rodabe N. Amaria
3Department of Melanoma Medical Oncology
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christine Spencer
4Department of Genomic Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandre Reuben
5Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zachary A. Cooper
4Department of Genomic Medicine
5Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected] [email protected]
Jennifer A. Wargo
4Department of Genomic Medicine
5Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected] [email protected]
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Siegel R,
    2. Ma J,
    3. Zou Z,
    4. Jemal A.
    Cancer statistics, 2014. CA Cancer J Clin 2014;64:9–29.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.↵
    1. Little EG,
    2. Eide MJ.
    Update on the current state of melanoma incidence. Dermatol Clin 2012;30:355–361.
    OpenUrlPubMed
  3. 3.↵
    1. Beddingfield FC 3rd..
    The melanoma epidemic: res ipsa loquitur. Oncologist 2003;8:459–465.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Costanza ME,
    2. Nathanson L,
    3. Costello WG,
    4. Wolter J,
    5. Brunk SF,
    6. Colsky J, et al.
    Results of a randomized study comparing DTIC with TIC mustard in malignant melanoma. Cancer 1976;37:1654–1659.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Patel PM,
    2. Suciu S,
    3. Mortier L,
    4. Kruit WH,
    5. Robert C,
    6. Schadendorf D, et al.
    Extended schedule, escalated dose temozolomide versus dacarbazine in stage IV melanoma: final results of a randomised phase III study (EORTC 18032). Eur J Cancer 2011;47:1476–1483.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    1. Sasse AD,
    2. Sasse EC,
    3. Clark LG,
    4. Ulloa L,
    5. Clark OA.
    Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. Cochrane Database Syst Rev 2007;CD005413.
  7. 7.↵
    1. Ives NJ,
    2. Stowe RL,
    3. Lorigan P,
    4. Wheatley K.
    Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. J Clin Oncol 2007;25:5426–5434.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. Atkins MB,
    2. Lotze MT,
    3. Dutcher JP,
    4. Fisher RI,
    5. Weiss G,
    6. Margolin K, et al.
    High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999;17:2105–2116.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. Atkins MB,
    2. Kunkel L,
    3. Sznol M,
    4. Rosenberg SA.
    High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 2000;6 Suppl 1:S11–S14.
    OpenUrlPubMed
  10. 10.↵
    1. Schwartzentruber DJ,
    2. Lawson DH,
    3. Richards JM,
    4. Conry RM,
    5. Miller DM,
    6. Treisman J, et al.
    gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 2011;364:2119–2127.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Pardoll DM.
    The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252–264.
    OpenUrlCrossRefPubMedWeb of Science
  12. 12.↵
    1. Ahmadzadeh M,
    2. Johnson LA,
    3. Heemskerk B,
    4. Wunderlich JR,
    5. Dudley ME,
    6. White DE, et al.
    Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009;114:1537–1544.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Hodi FS,
    2. O’Day SJ,
    3. McDermott DF,
    4. Weber RW,
    5. Sosman JA,
    6. Haanen JB, et al.
    Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711–723.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Robert C,
    2. Thomas L,
    3. Bondarenko I,
    4. O’Day S.
    Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011;364:2517–2526.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Topalian SL,
    2. Hodi FS,
    3. Brahmer JR,
    4. Gettinger SN,
    5. Smith DC,
    6. McDermott DF, et al.
    Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443–2454.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Ribas A,
    2. Hodi FS,
    3. Kefford R,
    4. Hamid O,
    5. Daud A,
    6. Wolchok JD, et al.
    Efficacy and safety of the anti-PD-1 monoclonal antibody MK-3475 in 411 patients (pts) with melanoma (MEL). J Clin Oncol 2014;32:abstr LBA9000.
  17. 17.↵
    1. Brahmer JR,
    2. Tykodi SS,
    3. Chow LQ,
    4. Hwu WJ,
    5. Topalian SL,
    6. Hwu P, et al.
    Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012;366:2455–2465.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Wolchok JD,
    2. Kluger H,
    3. Callahan MK,
    4. Postow MA,
    5. Rizvi NA,
    6. Lesokhin AM, et al.
    Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013;369:122–133.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Sznol M,
    2. Kluger HM,
    3. Callahan MK,
    4. Postow MA,
    5. Gordon RA,
    6. Segal NH, et al.
    Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma (MEL). J Clin Oncol 2014;32:abstr LBA9003.
  20. 20.↵
    1. Davies MA,
    2. Stemke-Hale K,
    3. Lin E,
    4. Tellez C,
    5. Deng W,
    6. Gopal YN, et al.
    Integrated Molecular and Clinical Analysis of AKT Activation in Metastatic Melanoma. Clin Cancer Res 2009;15:7538–7546.
    OpenUrlAbstract/FREE Full Text
  21. 21.↵
    1. Chapman PB,
    2. Hauschild A,
    3. Robert C,
    4. Haanen JB,
    5. Ascierto P,
    6. Larkin J, et al.
    Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:2507–2516.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Hauschild A,
    2. Grob JJ,
    3. Demidov LV,
    4. Jouary T,
    5. Gutzmer R,
    6. Millward M, et al.
    Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012;380:358–365.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Johannessen CM,
    2. Boehm JS,
    3. Kim SY,
    4. Thomas SR,
    5. Wardwell L,
    6. Johnson LA, et al.
    COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010;468:968–972.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Flaherty KT,
    2. Infante JR,
    3. Daud A,
    4. Gonzalez R,
    5. Kefford RF,
    6. Sosman J, et al.
    Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012;367:1694–1703.
    OpenUrlCrossRefPubMedWeb of Science
  25. 25.↵
    1. Gorantla VC,
    2. Kirkwood JM.
    State of melanoma: an historic overview of a field in transition. Hematol Oncol Clin North Am 2014;28:415–435.
    OpenUrl
  26. 26.↵
    1. Nazarian R,
    2. Shi H,
    3. Wang Q,
    4. Kong X,
    5. Koya RC,
    6. Lee H, et al.
    Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010;468:973–977.
    OpenUrlCrossRefPubMedWeb of Science
  27. 27.
    1. Straussman R,
    2. Morikawa T,
    3. Shee K,
    4. Barzily-Rokni M,
    5. Qian ZR,
    6. Du J, et al.
    Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012;487:500–504.
    OpenUrlCrossRefPubMedWeb of Science
  28. 28.
    1. Montagut C,
    2. Sharma SV,
    3. Shioda T,
    4. McDermott U,
    5. Ulman M,
    6. Ulkus LE, et al.
    Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 2008;68:4853–4861.
    OpenUrlAbstract/FREE Full Text
  29. 29.
    1. Emery CM,
    2. Vijayendran KG,
    3. Zipser MC,
    4. Sawyer AM,
    5. Niu L,
    6. Kim JJ, et al.
    MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A 2009;106:20411–20416.
    OpenUrlAbstract/FREE Full Text
  30. 30.
    1. Whittaker SR,
    2. Theurillat JP,
    3. Van Allen E,
    4. Wagle N,
    5. Hsiao J,
    6. Cowley GS, et al.
    A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 2013;3:350–362.
    OpenUrlAbstract/FREE Full Text
  31. 31.
    1. Shi H,
    2. Moriceau G,
    3. Kong X,
    4. Lee MK,
    5. Lee H,
    6. Koya RC, et al.
    Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 2012;3:724.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Poulikakos PI,
    2. Persaud Y,
    3. Janakiraman M,
    4. Kong X,
    5. Ng C,
    6. Moriceau G, et al.
    RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011;480:387–390.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Sumimoto H,
    2. Imabayashi F,
    3. Iwata T,
    4. Kawakami Y.
    The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 2006;203:1651–1656.
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. Boni A,
    2. Cogdill AP,
    3. Dang P,
    4. Udayakumar D,
    5. Njauw CN,
    6. Sloss CM, et al.
    Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 2010;70:5213–5219.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Vella LJ,
    2. Pasam A,
    3. Dimopoulos N,
    4. Andrews M,
    5. Knights A,
    6. Puaux AL, et al.
    MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunol Res 2014;2:351–360.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Callahan MK,
    2. Masters G,
    3. Pratilas CA,
    4. Ariyan C,
    5. Katz J,
    6. Kitano S, et al.
    Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunol Res 2014;2:70–79.
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. Cooper ZA,
    2. Frederick DT,
    3. Juneja VR,
    4. Sullivan RJ,
    5. Lawrence DP,
    6. Piris A, et al.
    BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology 2013;2:e26615.
  38. 38.↵
    1. Frederick DT,
    2. Piris A,
    3. Cogdill AP,
    4. Cooper ZA,
    5. Lezcano C,
    6. Ferrone CR, et al.
    BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 2013;19:1225–1231.
    OpenUrlAbstract/FREE Full Text
  39. 39.↵
    1. Wilmott JS,
    2. Long GV,
    3. Howle JR,
    4. Haydu LE,
    5. Sharma RN,
    6. Thompson JF, et al.
    Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res 2012;18:1386–1394.
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. Khalili JS,
    2. Liu S,
    3. Rodríguez-Cruz TG,
    4. Whittington M,
    5. Wardell S,
    6. Liu C, et al.
    Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res 2012;18:5329–5340.
    OpenUrlAbstract/FREE Full Text
  41. 41.↵
    1. Liu C,
    2. Peng W,
    3. Xu C,
    4. Lou Y,
    5. Zhang M,
    6. Wargo JA, et al.
    BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 2013;19:393–403.
    OpenUrlAbstract/FREE Full Text
  42. 42.↵
    1. Spranger S,
    2. Spaapen RM,
    3. Zha Y,
    4. Williams J,
    5. Meng Y,
    6. Ha TT, et al.
    Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 2013;5:200ra116.
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. Frederick DT,
    2. Ahmed Z,
    3. Cooper ZA,
    4. Lizee G,
    5. Hwu P,
    6. Ferrone CR, et al.
    Stromal fibroblasts contribute to the up-regulation of PD-L1 in melanoma after BRAF inhibition. Society For Melanoma Research 2013 International Congress; 2013; Philadelphia, PA; 2013:950–1.
  44. 44.↵
    1. Jiang X,
    2. Zhou J,
    3. Giobbie-Hurder A,
    4. Wargo J,
    5. Hodi FS.
    The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res 2013;19:598–609.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Koya RC,
    2. Mok S,
    3. Otte N,
    4. Blacketor KJ,
    5. Comin-Anduix B,
    6. Tumeh PC, et al.
    BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res 2012;72:3928–3937.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Knight DA,
    2. Ngiow SF,
    3. Li M,
    4. Parmenter T,
    5. Mok S,
    6. Cass A, et al.
    Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Invest 2013;123:1371–1381.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Cooper ZA,
    2. Juneja VR,
    3. Sage PT,
    4. Frederick DT,
    5. Piris A,
    6. Mitra D, et al.
    Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol Res 2014;2:643–654.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Hooijkaas A,
    2. Gadiot J,
    3. Morrow M,
    4. Stewart R,
    5. Schumacher T,
    6. Blank CU.
    Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma. Oncoimmunology 2012;1:609–617.
    OpenUrlCrossRefPubMedWeb of Science
  49. 49.↵
    1. Ribas A,
    2. Hodi FS,
    3. Callahan M,
    4. Konto C,
    5. Wolchok J.
    Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 2013;368:1365–1366.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Puzanov I,
    2. Callahan MK,
    3. Linette GP,
    4. Patel SP,
    5. Luke JJ,
    6. Sosman JA, et al.
    Phase 1 study of the BRAF inhibitor dabrafenib (D) with or without the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for V600E/K mutation–positive unresectable or metastatic melanoma (MM). J Clin Oncol 2014;32:abstr 2511.
  51. 51.↵
    1. Radvanyi LG,
    2. Bernatchez C,
    3. Zhang M,
    4. Fox PS,
    5. Miller P,
    6. Chacon J, et al.
    Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res 2012;18:6758–6770.
    OpenUrlAbstract/FREE Full Text
  52. 52.↵
    1. Falchook GS,
    2. Long GV,
    3. Kurzrock R,
    4. Kim KB,
    5. Arkenau TH,
    6. Brown MP, et al.
    Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 2012;379:1893–1901.
    OpenUrlCrossRefPubMedWeb of Science
  53. 53.↵
    1. Postow MA,
    2. Callahan MK,
    3. Barker CA,
    4. Yamada Y,
    5. Yuan J,
    6. Kitano S, et al.
    Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 2012;366:925–931.
    OpenUrlCrossRefPubMedWeb of Science
  54. 54.↵
    1. Sullivan RJ,
    2. Lawrence DP,
    3. Wargo JA,
    4. Oh KS,
    5. Gonzalez RG,
    6. Piris A.
    Case records of the Massachusetts General Hospital. Case 21-2013. A 68-year-old man with metastatic melanoma. N Engl J Med 2013;369:173–183.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Cancer Biology and Medicine: 11 (4)
Cancer Biology & Medicine
Vol. 11, Issue 4
1 Dec 2014
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma
Kim Teresa, Rodabe N. Amaria, Christine Spencer, Alexandre Reuben, Zachary A. Cooper, Jennifer A. Wargo
Cancer Biology & Medicine Dec 2014, 11 (4) 237-246; DOI: 10.7497/j.issn.2095-3941.2014.04.002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma
Kim Teresa, Rodabe N. Amaria, Christine Spencer, Alexandre Reuben, Zachary A. Cooper, Jennifer A. Wargo
Cancer Biology & Medicine Dec 2014, 11 (4) 237-246; DOI: 10.7497/j.issn.2095-3941.2014.04.002
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Treatments for advanced melanoma
    • Preclinical data
    • Current and ongoing clinical trials of combined targeted and immunotherapy
    • Future directions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Drugging the ‘undruggable’ KRAS: breakthroughs, challenges, and opportunities in pancreatic cancer
  • Neutrophils in cancer: from immune defense to tumor promotion
  • Multi-omics in colorectal cancer liver metastasis: applications and research advances
Show more Review

Similar Articles

Keywords

  • Melanoma
  • checkpoint blockade
  • BRAF inhibition
  • immunotherapy

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2025 Cancer Biology & Medicine

Powered by HighWire