Skip to main content

Main menu

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Other Publications
    • cbm

User menu

  • My alerts

Search

  • Advanced search
Cancer Biology & Medicine
  • Other Publications
    • cbm
  • My alerts
Cancer Biology & Medicine

Advanced Search

 

  • Home
  • About
    • About CBM
    • Editorial Board
  • Articles
    • Ahead of print
    • Current Issue
    • Archive
    • Collections
    • Cover Story
  • For Authors
    • Instructions for Authors
    • Resources
    • Submit a Manuscript
  • For Reviewers
    • Become a Reviewer
    • Instructions for Reviewers
    • Resources
    • Outstanding Reviewer
  • Subscription
  • Alerts
    • Email Alerts
    • RSS Feeds
    • Table of Contents
  • Contact us
  • Follow cbm on Twitter
  • Visit cbm on Facebook
Review ArticleReview

Major roles of the circadian clock in cancer

Chen Huang, Chenliang Zhang, Yubin Cao, Jian Li and Feng Bi
Cancer Biology & Medicine January 2023, 20 (1) 1-24; DOI: https://doi.org/10.20892/j.issn.2095-3941.2022.0474
Chen Huang
1Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chenliang Zhang
2Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yubin Cao
3Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jian Li
4West China School of Medicine, Sichuan University, Chengdu 610000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Feng Bi
1Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Feng Bi
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. 1.↵
    1. Shafi AA,
    2. Knudsen KE.
    Cancer and the circadian clock. Cancer Res. 2019; 79: 3806–14.
    OpenUrlCrossRef
  2. 2.↵
    1. Ouyang Y,
    2. Andersson CR,
    3. Kondo T,
    4. Golden SS,
    5. Johnson CH.
    Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A. 1998; 95: 8660–4.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Turek FW.
    Circadian clocks: not your grandfather’s clock. Science. 2016; 354: 992–3.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Mohawk JA,
    2. Green CB,
    3. Takahashi JS.
    Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012; 35: 445–62.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    1. Sancar A,
    2. van Gelder RN.
    Clocks, cancer, and chronochemotherapy. Science. 2021; 371: eabb0738.
  6. 6.↵
    1. Partch CL,
    2. Green CB,
    3. Takahashi JS.
    Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014; 24: 90–9.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    1. Patke A,
    2. Young MW,
    3. Axelrod S.
    Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020; 21: 67–84.
    OpenUrlPubMed
  8. 8.
    1. Reppert SM,
    2. Weaver DR.
    Coordination of circadian timing in mammals. Nature. 2002; 418: 935–41.
    OpenUrlCrossRefPubMedWeb of Science
  9. 9.
    1. Hastings MH,
    2. Reddy AB,
    3. Maywood ES.
    A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003; 4: 649–61.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.↵
    1. Cederroth CR,
    2. Albrecht U,
    3. Bass J,
    4. Brown SA,
    5. Dyhrfjeld-Johnsen J,
    6. Gachon F, et al.
    Medicine in the fourth dimension. Cell Metab. 2019; 30: 238–50.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Lubov JE,
    2. Cvammen W,
    3. Kemp MG.
    The impact of the circadian clock on skin physiology and cancer development. Int J Mol Sci. 2021; 22: 6112.
    OpenUrl
  12. 12.↵
    1. Kume K,
    2. Zylka MJ,
    3. Sriram S,
    4. Shearman LP,
    5. Weaver DR,
    6. Jin X, et al.
    mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999; 98: 193–205.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.
    1. Griffin EA,
    2. Staknis D,
    3. Weitz CJ.
    Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science. 1999; 286: 768–71.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Sangoram AM,
    2. Saez L,
    3. Antoch MP,
    4. Gekakis N,
    5. Staknis D,
    6. Whiteley A, et al.
    Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron. 1998; 21: 1101–13.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Narasimamurthy R,
    2. Virshup DM.
    The phosphorylation switch that regulates ticking of the circadian clock. Mol Cell 2021; 81: 1133–46.
    OpenUrlCrossRef
  16. 16.
    1. Kondratov RV,
    2. Chernov MV,
    3. Kondratova AA,
    4. Gorbacheva VY,
    5. Gudkov AV,
    6. Antoch MP.
    BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 2003; 17: 1921–32.
    OpenUrlAbstract/FREE Full Text
  17. 17.
    1. Kondratov RV,
    2. Shamanna RK,
    3. Kondratova AA,
    4. Gorbacheva VY,
    5. Antoch MP.
    Dual role of the CLOCK/BMAL1 circadian complex in transcriptional regulation. FASEB J. 2006; 20: 530–2.
    OpenUrlCrossRefPubMed
  18. 18.
    1. Xu Y,
    2. Padiath QS,
    3. Shapiro RE,
    4. Jones CR,
    5. Wu SC,
    6. Saigoh N, et al.
    Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005; 434: 640–4.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.
    1. Etchegaray JP,
    2. Machida KK,
    3. Noton E,
    4. Constance CM,
    5. Dallmann R,
    6. Di Napoli MN, et al.
    Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol Cell Biol. 2009; 29: 3853–66.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Philpott JM,
    2. Narasimamurthy R,
    3. Ricci CG,
    4. Freeberg AM,
    5. Hunt SR,
    6. Yee LE, et al.
    Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. Elife. 2020; 9: e52343.
  21. 21.↵
    1. Green CB.
    Circadian posttranscriptional regulatory mechanisms in mammals. Cold Spring Harb Perspect Biol. 2018; 10: a030692.
  22. 22.↵
    1. Shilts J,
    2. Chen G,
    3. Hughey JJ.
    Evidence for widespread dysregulation of circadian clock progression in human cancer. PeerJ. 2018; 6: e4327.
  23. 23.↵
    1. Shostak A,
    2. Ruppert B,
    3. Ha N,
    4. Bruns P,
    5. Toprak UH,
    6. Eils R, et al.
    MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation. Nat Commun. 2016; 7: 11807.
  24. 24.↵
    1. Huber AL,
    2. Papp SJ,
    3. Chan AB,
    4. Henriksson E,
    5. Jordan SD,
    6. Kriebs A, et al.
    CRY2 and FBXL3 cooperatively degrade c-MYC. Mol Cell. 2016; 64: 774–89.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Aviram R,
    2. Manella G,
    3. Kopelman N,
    4. Neufeld-Cohen A,
    5. Zwighaft Z,
    6. Elimelech M, et al.
    Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol Cell 2016; 62: 636–48.
    OpenUrlCrossRefPubMed
  26. 26.
    1. Blask DE,
    2. Dauchy RT,
    3. Dauchy EM,
    4. Mao L,
    5. Hill SM,
    6. Greene MW, et al.
    Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS One. 2014; 9: e102776.
  27. 27.
    1. Gamble KL,
    2. Berry R,
    3. Frank SJ,
    4. Young ME.
    Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014; 10: 466–75.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Greene MW.
    Circadian rhythms and tumor growth. Cancer Lett. 2012; 318: 115–23.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. He W,
    2. Holtkamp S,
    3. Hergenhan SM,
    4. Kraus K,
    5. de Juan A,
    6. Weber J, et al.
    Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity. 2018; 49: 1175–90.e7.
    OpenUrl
  30. 30.
    1. Aiello I,
    2. Fedele MLM,
    3. Román F,
    4. Marpegan L,
    5. Caldart C,
    6. Chiesa JJ, et al.
    Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Sci Adv. 2020; 6: eaaz4530.
  31. 31.
    1. Hadadi E,
    2. Taylor W,
    3. Li XM,
    4. Aslan Y,
    5. Villote M,
    6. Rivière J, et al.
    Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nat Commun. 2020; 11: 3193.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Wu Y,
    2. Tao B,
    3. Zhang T,
    4. Fan Y,
    5. Mao R.
    Pan-cancer analysis reveals disrupted circadian clock associates with T cell exhaustion. Front Immunol. 2019; 10: 2451.
    OpenUrl
  33. 33.↵
    1. Thorsson V,
    2. Gibbs DL,
    3. Brown SD,
    4. Wolf D,
    5. Bortone DS,
    6. Ou Yang TH, et al.
    The immune landscape of cancer. Immunity. 2018; 48: 812–30.e14.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Xie Y,
    2. Tang Q,
    3. Chen G,
    4. Xie M,
    5. Yu S,
    6. Zhao J, et al.
    New insights into the circadian rhythm and its related diseases. Front Physiol. 2019; 10: 682.
    OpenUrl
  35. 35.
    1. Leng Y,
    2. Musiek ES,
    3. Hu K,
    4. Cappuccio FP,
    5. Yaffe K.
    Association between circadian rhythms and neurodegenerative diseases. Lancet. Neurol. 2019; 18: 307–18.
    OpenUrl
  36. 36.↵
    1. Kinouchi K,
    2. Sassone-Corsi P.
    Metabolic rivalry: circadian homeostasis and tumorigenesis. Nat Rev Cancer. 2020; 20: 645–61.
    OpenUrl
  37. 37.
    1. Schibler U,
    2. Gotic I,
    3. Saini C,
    4. Gos P,
    5. Curie T,
    6. Emmenegger Y, et al.
    Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol. 2015; 80: 223–32.
    OpenUrlAbstract/FREE Full Text
  38. 38.
    1. Cox KH,
    2. Takahashi JS.
    Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol. 2019; 63: R93–102.
    OpenUrlCrossRef
  39. 39.↵
    1. Finger AM,
    2. Dibner C,
    3. Kramer A.
    Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett. 2020; 594: 2734–69.
    OpenUrlCrossRef
  40. 40.↵
    1. Numata M,
    2. Hirano A,
    3. Yamamoto Y,
    4. Yasuda M,
    5. Miura N,
    6. Sayama K, et al.
    Metastasis of breast cancer promoted by circadian rhythm disruption due to light/dark shift and its prevention by dietary quercetin in mice. J Circadian Rhythms. 2021; 19: 2.
    OpenUrl
  41. 41.
    1. Ha NH,
    2. Long J,
    3. Cai Q,
    4. Shu XO,
    5. Hunter KW.
    The circadian rhythm gene Arntl2 is a metastasis susceptibility gene for estrogen receptor-negative breast cancer. PLoS Genetics. 2016; 12: e1006267.
  42. 42.
    1. Chen J,
    2. Liu A,
    3. Lin Z,
    4. Wang B,
    5. Chai X,
    6. Chen S, et al.
    Downregulation of the circadian rhythm regulator HLF promotes multiple-organ distant metastases in non-small cell lung cancer through PPAR/NF-κb signaling. Cancer Lett. 2020; 482: 56–71.
    OpenUrlPubMed
  43. 43.↵
    1. Wang Y,
    2. Sun N,
    3. Lu C,
    4. Bei Y,
    5. Qian R,
    6. Hua L.
    Upregulation of circadian gene ‘hClock’ contribution to metastasis of colorectal cancer. Int J Oncol. 2017; 50: 2191–9.
    OpenUrl
  44. 44.↵
    1. Koritala BSC,
    2. Porter KI,
    3. Arshad OA,
    4. Gajula RP,
    5. Mitchell HD,
    6. Arman T, et al.
    Night shift schedule causes circadian dysregulation of DNA repair genes and elevated DNA damage in humans. J Pineal Res. 2021; 70: e12726.
  45. 45.
    1. Dun A,
    2. Zhao X,
    3. Jin X,
    4. Wei T,
    5. Gao X,
    6. Wang Y, et al.
    Association between night-shift work and cancer risk: updated systematic review and meta-analysis. Front Oncol. 2020; 10: 1006.
    OpenUrl
  46. 46.↵
    1. Srour B,
    2. Plancoulaine S,
    3. Andreeva VA,
    4. Fassier P,
    5. Julia C,
    6. Galan P, et al.
    Circadian nutritional behaviours and cancer risk: new insights from the NutriNet-santé prospective cohort study: disclaimers. Int J Cancer. 2018; 143: 2369–79.
    OpenUrl
  47. 47.↵
    1. Lou X,
    2. Wang H,
    3. Tu Y,
    4. Tan W,
    5. Jiang C,
    6. Sun J, et al.
    Alterations of sleep quality and circadian rhythm genes expression in elderly thyroid nodule patients and risks associated with thyroid malignancy. Sci Rep. 2021; 11: 13682.
    OpenUrl
  48. 48.↵
    1. Kondratov RV,
    2. Kondratova AA,
    3. Gorbacheva VY,
    4. Vykhovanets OV,
    5. Antoch MP.
    Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006; 20: 1868–73.
    OpenUrlAbstract/FREE Full Text
  49. 49.↵
    1. Yu EA,
    2. Weaver DR.
    Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging. 2011; 3: 479–93.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Papagiannakopoulos T,
    2. Bauer MR,
    3. Davidson SM,
    4. Heimann M,
    5. Subbaraj L,
    6. Bhutkar A, et al.
    Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016; 24: 324–31.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Sulli G,
    2. Lam MTY,
    3. Panda S.
    Interplay between circadian clock and cancer: new frontiers for cancer treatment. Trends Cancer. 2019; 5: 475–94.
    OpenUrl
  52. 52.↵
    1. Zhou L,
    2. Luo Z,
    3. Li Z,
    4. Huang Q.
    Circadian clock is associated with tumor microenvironment in kidney renal clear cell carcinoma. Aging. 2020; 12: 14620–32.
    OpenUrl
  53. 53.
    1. Yang Y,
    2. Yuan G,
    3. Xie H,
    4. Wei T,
    5. Zhu D,
    6. Cui J, et al.
    Circadian clock associates with tumor microenvironment in thoracic cancers. Aging. 2019; 11: 11814–28.
    OpenUrl
  54. 54.
    1. Pavlova NN,
    2. Thompson CB.
    The emerging hallmarks of cancer metabolism. Cell Metab. 2016; 23: 27–47.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Chen WD,
    2. Wen MS,
    3. Shie SS,
    4. Lo YL,
    5. Wo HT,
    6. Wang CC, et al.
    The circadian rhythm controls telomeres and telomerase activity. Biochem Biophys Res Commun. 2014; 451: 408–14.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Ruan W,
    2. Yuan X,
    3. Eltzschig HK.
    Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 2021; 20: 287–307.
    OpenUrlCrossRef
  57. 57.↵
    1. Chen P,
    2. Hsu WH,
    3. Han J,
    4. Xia Y,
    5. DePinho RA.
    Cancer stemness meets immunity: from mechanism to therapy. Cell Rep. 2021; 34: 108597.
  58. 58.↵
    1. Chen P,
    2. Hsu WH,
    3. Chang A,
    4. Tan Z,
    5. Lan Z,
    6. Zhou A, et al.
    Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment. Cancer Discov. 2020; 10: 371–81.
    OpenUrlAbstract/FREE Full Text
  59. 59.
    1. Dong Z,
    2. Zhang G,
    3. Qu M,
    4. Gimple RC,
    5. Wu Q,
    6. Qiu Z, et al.
    Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov. 2019; 9: 1556–73.
    OpenUrlAbstract/FREE Full Text
  60. 60.↵
    1. Puram RV,
    2. Kowalczyk MS,
    3. de Boer CG,
    4. Schneider RK,
    5. Miller PG,
    6. McConkey M, et al.
    Core circadian clock genes regulate leukemia stem cells in AML. Cell. 2016; 165: 303–16.
    OpenUrlCrossRefPubMed
  61. 61.↵
    1. Hu Z,
    2. Brooks SA,
    3. Dormoy V,
    4. Hsu CW,
    5. Hsu HY,
    6. Lin LT, et al.
    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis. 2015; 36 Suppl 1: S184–202.
    OpenUrlCrossRefPubMed
  62. 62.
    1. Jiang X,
    2. Wang J,
    3. Deng X,
    4. Xiong F,
    5. Zhang S,
    6. Gong Z, et al.
    The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020; 39: 204.
    OpenUrl
  63. 63.↵
    1. Hanahan D,
    2. Weinberg RA.
    Hallmarks of cancer: the next generation. Cell. 2011; 144: 646–74.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.↵
    1. Shalapour S,
    2. Karin M.
    Pas de deux: control of anti-tumor immunity by cancer-associated inflammation. Immunity. 2019; 51: 15–26.
    OpenUrl
  65. 65.↵
    1. Ramos CA,
    2. Ouyang C,
    3. Qi Y,
    4. Chung Y,
    5. Cheng CT,
    6. LaBarge MA, et al.
    A non-canonical function of BMAL1 metabolically limits obesity-promoted triple-negative breast cancer. iScience. 2020; 23: 100839.
  66. 66.↵
    1. Matsunaga N,
    2. Ogino T,
    3. Hara Y,
    4. Tanaka T,
    5. Koyanagi S,
    6. Ohdo S.
    Optimized dosing schedule based on circadian dynamics of mouse breast cancer stem cells improves the antitumor effects of aldehyde dehydrogenase inhibitor. Cancer Res. 2018; 78: 3698–708.
    OpenUrlAbstract/FREE Full Text
  67. 67.↵
    1. Chefetz I,
    2. Grimley E,
    3. Yang K,
    4. Hong L,
    5. Vinogradova EV,
    6. Suciu R, et al.
    A pan-ALDH1A inhibitor induces necroptosis in ovarian cancer stem-like cells. Cell Rep. 2019; 26: 3061–3075.e6.
    OpenUrl
  68. 68.↵
    1. Kojima M,
    2. Hosoda H,
    3. Date Y,
    4. Nakazato M,
    5. Matsuo H,
    6. Kangawa K.
    Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999; 402: 656–60.
    OpenUrlCrossRefPubMedWeb of Science
  69. 69.
    1. Avau B,
    2. Carbone F,
    3. Tack J,
    4. Depoortere I.
    Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol Motil. 2013; 25: 720–32.
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. Müller TD,
    2. Nogueiras R,
    3. Andermann ML,
    4. Andrews ZB,
    5. Anker SD,
    6. Argente J, et al.
    Ghrelin. Mol Metab. 2015; 4: 437–60.
    OpenUrl
  71. 71.↵
    1. Waseem T,
    2. Javaid Ur R,
    3. Ahmad F,
    4. Azam M,
    5. Qureshi MA.
    Role of ghrelin axis in colorectal cancer: a novel association. Peptides. 2008; 29: 1369–76.
    OpenUrlPubMed
  72. 72.
    1. Murata M,
    2. Okimura Y,
    3. Iida K,
    4. Matsumoto M,
    5. Sowa H,
    6. Kaji H, et al.
    Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J Biol Chem. 2002; 277: 5667–74.
    OpenUrlAbstract/FREE Full Text
  73. 73.
    1. De Vriese C,
    2. Grégoire F,
    3. De Neef P,
    4. Robberecht P,
    5. Delporte C.
    Ghrelin is produced by the human erythroleukemic HEL cell line and involved in an autocrine pathway leading to cell proliferation. Endocrinology. 2005; 146: 1514–22.
    OpenUrlCrossRefPubMedWeb of Science
  74. 74.
    1. Fung JNT,
    2. Seim I,
    3. Wang D,
    4. Obermair A,
    5. Chopin LK,
    6. Chen C.
    Expression and in vitro functions of the ghrelin axis in endometrial cancer. Horm Cancer. 2010; 1: 245–55.
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Duxbury MS,
    2. Waseem T,
    3. Ito H,
    4. Robinson MK,
    5. Zinner MJ,
    6. Ashley SW, et al.
    Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness. Biochem Biophys Res Commun. 2003; 309: 464–68.
    OpenUrlCrossRefPubMedWeb of Science
  76. 76.↵
    1. Lien GS,
    2. Lin CH,
    3. Yang YL,
    4. Wu MS,
    5. Chen BC.
    Ghrelin induces colon cancer cell proliferation through the GHS-R, Ras, PI3K, Akt, and mTOR signaling pathways. Eur J Pharmacol. 2016; 776: 124–31.
    OpenUrl
  77. 77.↵
    1. Kraus D,
    2. Reckenbeil J,
    3. Wenghoefer M,
    4. Stark H,
    5. Frentzen M,
    6. Allam JP, et al.
    Ghrelin promotes oral tumor cell proliferation by modifying GLUT1 expression. Cell Mol Life Sci. 2016; 73: 1287–99.
    OpenUrl
  78. 78.↵
    1. Díaz-Lezama N,
    2. Hernández-Elvira M,
    3. Sandoval A,
    4. Monroy A,
    5. Felix R,
    6. Monjaraz E.
    Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells. Biochem Biophys Res Commun. 2010; 403: 24–9.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Yeh AH,
    2. Jeffery PL,
    3. Duncan RP,
    4. Herington AC,
    5. Chopin LK.
    Ghrelin and a novel preproghrelin isoform are highly expressed in prostate cancer and ghrelin activates mitogen-activated protein kinase in prostate cancer. Clin Cancer Res. 2005; 11: 8295–303.
    OpenUrlAbstract/FREE Full Text
  80. 80.↵
    1. Segers A,
    2. Desmet L,
    3. Sun S,
    4. Verbeke K,
    5. Tack J,
    6. Depoortere I.
    Night-time feeding of Bmal1-/- mice restores SCFA rhythms and their effect on ghrelin. J Endocrinol. 2020; 245: 155–64.
    OpenUrl
  81. 81.↵
    1. Cummings DE,
    2. Purnell JQ,
    3. Frayo RS,
    4. Schmidova K,
    5. Wisse BE,
    6. Weigle DS.
    A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001; 50: 1714–9.
    OpenUrlAbstract/FREE Full Text
  82. 82.
    1. Bodosi B,
    2. Gardi J,
    3. Hajdu I,
    4. Szentirmai E,
    5. Obal F,
    6. Krueger JM.
    Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004; 287: R1071–9.
    OpenUrlCrossRefPubMedWeb of Science
  83. 83.↵
    1. Yildiz BO,
    2. Suchard MA,
    3. Wong ML,
    4. McCann SM,
    5. Licinio J.
    Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S A. 2004; 101: 10434–9.
    OpenUrlAbstract/FREE Full Text
  84. 84.↵
    1. Laermans J,
    2. Vancleef L,
    3. Tack J,
    4. Depoortere I.
    Role of the clock gene Bmal1 and the gastric ghrelin-secreting cell in the circadian regulation of the ghrelin-GOAT system. Sci Rep. 2015; 5: 16748.
  85. 85.↵
    1. Diehl JA,
    2. Fuchs SY,
    3. Koumenis C.
    The cell biology of the unfolded protein response. Gastroenterology. 2011; 141: 38–41.
    OpenUrlCrossRefPubMedWeb of Science
  86. 86.↵
    1. Bu Y,
    2. Yoshida A,
    3. Chitnis N,
    4. Altman BJ,
    5. Tameire F,
    6. Oran A, et al.
    A PERK-miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nat Cell Biol. 2018; 20: 104–15.
    OpenUrlCrossRefPubMed
  87. 87.↵
    1. Hart LS,
    2. Cunningham JT,
    3. Datta T,
    4. Dey S,
    5. Tameire F,
    6. Lehman SL, et al.
    ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest. 2012; 122: 4621–34.
    OpenUrlCrossRefPubMedWeb of Science
  88. 88.↵
    1. Cramer T,
    2. Yamanishi Y,
    3. Clausen BE,
    4. Förster I,
    5. Pawlinski R,
    6. Mackman N, et al.
    HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003; 112: 645–57.
    OpenUrlCrossRefPubMedWeb of Science
  89. 89.
    1. Masson N,
    2. Ratcliffe PJ.
    Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab. 2014; 2: 3.
    OpenUrl
  90. 90.↵
    1. Semenza GL,
    2. Roth PH,
    3. Fang HM,
    4. Wang GL.
    Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994; 269: 23757–63.
    OpenUrlAbstract/FREE Full Text
  91. 91.↵
    1. Doedens AL,
    2. Stockmann C,
    3. Rubinstein MP,
    4. Liao D,
    5. Zhang N,
    6. DeNardo DG, et al.
    Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 2010; 70: 7465–75.
    OpenUrlAbstract/FREE Full Text
  92. 92.↵
    1. Steggerda SM,
    2. Bennett MK,
    3. Chen J,
    4. Emberley E,
    5. Huang T,
    6. Janes JR, et al.
    Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 2017; 5: 101.
    OpenUrlAbstract/FREE Full Text
  93. 93.↵
    1. Nguyen KD,
    2. Fentress SJ,
    3. Qiu Y,
    4. Yun K,
    5. Cox JS,
    6. Chawla A.
    Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 2013; 341: 1483–8.
    OpenUrlAbstract/FREE Full Text
  94. 94.↵
    1. Alexander RK,
    2. Liou YH,
    3. Knudsen NH,
    4. Starost KA,
    5. Xu C,
    6. Hyde AL, et al.
    Bmal1 integrates mitochondrial metabolism and macrophage activation. ELife. 2020; 9: e54090.
  95. 95.↵
    1. DeMarzo AM,
    2. Nelson WG,
    3. Isaacs WB,
    4. Epstein JI.
    Pathological and molecular aspects of prostate cancer. Lancet (London, England). 2003; 361: 955–64.
    OpenUrl
  96. 96.
    1. Albihn A,
    2. Johnsen JI,
    3. Henriksson MA.
    MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res. 2010; 107: 163–224.
    OpenUrlCrossRefPubMed
  97. 97.↵
    1. Fernandez PC,
    2. Frank SR,
    3. Wang L,
    4. Schroeder M,
    5. Liu S,
    6. Greene J, et al.
    Genomic targets of the human c-Myc protein. Genes Dev. 2003; 17: 1115–29.
    OpenUrlAbstract/FREE Full Text
  98. 98.↵
    1. Adhikary S,
    2. Eilers M.
    Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol. 2005; 6: 635–45.
    OpenUrlCrossRefPubMedWeb of Science
  99. 99.↵
    1. Larsson LG,
    2. Henriksson MA.
    The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res. 2010; 316: 1429–37.
    OpenUrlCrossRefPubMedWeb of Science
  100. 100.↵
    1. Altman BJ,
    2. Hsieh AL,
    3. Sengupta A,
    4. Krishnanaiah SY,
    5. Stine ZE,
    6. Walton ZE, et al.
    MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab. 2015; 22: 1009–19.
    OpenUrlCrossRefPubMed
  101. 101.↵
    1. Gery S,
    2. Komatsu N,
    3. Baldjyan L,
    4. Yu A,
    5. Koo D,
    6. Koeffler HP.
    The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell. 2006; 22: 375–82.
    OpenUrlCrossRefPubMedWeb of Science
  102. 102.
    1. Hua H,
    2. Wang Y,
    3. Wan C,
    4. Liu Y,
    5. Zhu B,
    6. Yang C, et al.
    Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci. 2006; 97: 589–96.
    OpenUrlCrossRefPubMed
  103. 103.↵
    1. Yang X,
    2. Wood PA,
    3. Ansell CM,
    4. Quiton DFT,
    5. Oh EY,
    6. Du-Quiton J, et al.
    The circadian clock gene Per1 suppresses cancer cell proliferation and tumor growth at specific times of day. Chronobiol Int. 2009; 26: 1323–39.
    OpenUrlCrossRefPubMed
  104. 104.↵
    1. Repouskou A,
    2. Prombona A.
    c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level. Biochim Biophys Acta. 2016; 1859: 541–52.
    OpenUrl
  105. 105.↵
    1. O’Connor K,
    2. Chen M.
    Dynamic functions of RhoA in tumor cell migration and invasion. Small GTPases. 2013; 4: 141–7.
    OpenUrlCrossRefPubMed
  106. 106.↵
    1. Chiba S,
    2. Enami T,
    3. Ogawa S,
    4. Sakata-Yanagimoto M.
    G17V RHOA: Genetic evidence of GTP-unbound RHOA playing a role in tumorigenesis in T cells. Small GTPases. 2015; 6: 100–3.
    OpenUrl
  107. 107.↵
    1. Nomikou E,
    2. Stournaras C,
    3. Kardassis D.
    Functional analysis of the promoters of the small GTPases RhoA and RhoB in embryonic stem cells. Biochem Biophys Res Commun. 2017; 491: 754–9.
    OpenUrl
  108. 108.↵
    1. Ma TJ,
    2. Zhang ZW,
    3. Lu YL,
    4. Zhang YY,
    5. Tao DC,
    6. Liu YQ, et al.
    CLOCK and BMAL1 stabilize and activate RHOA to promote F-actin formation in cancer cells. Exp Mol Med. 2018; 50: 1–50.
    OpenUrlCrossRefPubMed
  109. 109.↵
    1. Ramanathan C,
    2. Kathale ND,
    3. Liu D,
    4. Lee C,
    5. Freeman DA,
    6. Hogenesch JB, et al.
    mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet. 2018; 14: e1007369.
  110. 110.↵
    1. Memmott RM,
    2. Dennis PA.
    Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 2009; 21: 656–64.
    OpenUrlCrossRefPubMedWeb of Science
  111. 111.↵
    1. Chiang GG,
    2. Abraham RT.
    Targeting the mTOR signaling network in cancer. Trends Mol Med. 2007; 13: 433–42.
    OpenUrlCrossRefPubMedWeb of Science
  112. 112.↵
    1. Alzahrani AS.
    PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019; 59: 125–32.
    OpenUrlCrossRefPubMed
  113. 113.↵
    1. Hardie DG.
    AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007; 8: 774–85.
    OpenUrlCrossRefPubMedWeb of Science
  114. 114.↵
    1. Lee Y,
    2. Kim EK.
    AMP-activated protein kinase as a key molecular link between metabolism and clockwork. Exp Mol Med. 2013; 45: e33.
  115. 115.↵
    1. Um JH,
    2. Yang S,
    3. Yamazaki S,
    4. Kang H,
    5. Viollet B,
    6. Foretz M, et al.
    Activation of 5’-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem. 2007; 282: 20794–8.
    OpenUrlAbstract/FREE Full Text
  116. 116.↵
    1. Liang J,
    2. Mills GB.
    AMPK: a contextual oncogene or tumor suppressor? Cancer Res. 2013; 73: 2929–35.
    OpenUrlAbstract/FREE Full Text
  117. 117.↵
    1. Carling D.
    AMPK signalling in health and disease. Curr Opin Cell Biol. 2017; 45: 31–7.
    OpenUrlCrossRefPubMed
  118. 118.↵
    1. Li Q,
    2. Xia D,
    3. Wang Z,
    4. Liu B,
    5. Zhang J,
    6. Peng P, et al.
    Circadian rhythm gene PER3 negatively regulates stemness of prostate cancer stem cells via WNT/β-catenin signaling in tumor microenvironment. Front Cell Dev Biol. 2021; 9: 656981.
  119. 119.↵
    1. Maiese K.
    Moving to the rhythm with clock (Circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res. 2017; 14: 299–304.
    OpenUrlCrossRef
  120. 120.↵
    1. Okazaki F,
    2. Matsunaga N,
    3. Okazaki H,
    4. Azuma H,
    5. Hamamura K,
    6. Tsuruta A, et al.
    Circadian clock in a mouse colon tumor regulates intracellular iron levels to promote tumor progression. J Biol Chem. 2016; 291: 7017–28.
    OpenUrlAbstract/FREE Full Text
  121. 121.↵
    1. Shen Y,
    2. Endale M,
    3. Wang W,
    4. Morris AR,
    5. Francey LJ,
    6. Harold RL, et al.
    NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genet. 2021; 17: e1009933.
  122. 122.
    1. Kubra S,
    2. Zhang H,
    3. Si Y,
    4. Gao X,
    5. Wang T,
    6. Pan L, et al.
    REGγ regulates circadian clock by modulating BMAL1 protein stability. Cell Death Discov. 2021; 7: 335.
    OpenUrl
  123. 123.
    1. Moreno-Smith M,
    2. Milazzo G,
    3. Tao L,
    4. Fekry B,
    5. Zhu B,
    6. Mohammad MA, et al.
    Restoration of the molecular clock is tumor suppressive in neuroblastoma. Nat Commun. 2021; 12: 4006.
    OpenUrlCrossRef
  124. 124.↵
    1. Jiang W,
    2. Zhao S,
    3. Jiang X,
    4. Zhang E,
    5. Hu G,
    6. Hu B, et al.
    The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett. 2016; 371: 314–25.
    OpenUrlCrossRefPubMed
  125. 125.↵
    1. Liu L,
    2. Liao JZ,
    3. He XX,
    4. Li PY.
    The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget. 2017; 8: 57707–22.
    OpenUrlCrossRef
  126. 126.↵
    1. Torre LA,
    2. Bray F,
    3. Siegel RL,
    4. Ferlay J,
    5. Lortet-Tieulent J,
    6. Jemal A.
    Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65: 87–108.
    OpenUrlCrossRefPubMed
  127. 127.↵
    World Health Organization, Projections of Mortality and Causes of Death, 2016 to 2060. Geneva, Switzerland: World Health Organization; 2020.
  128. 128.↵
    1. Singal AG,
    2. El-Serag HB.
    Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol. 2015; 13: 2140–51.
    OpenUrlCrossRefPubMed
  129. 129.↵
    1. Fattovich G,
    2. Stroffolini T,
    3. Zagni I,
    4. Donato F.
    Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004; 127(5 Suppl 1): S35–50.
    OpenUrlCrossRefPubMedWeb of Science
  130. 130.↵
    1. Molina-Aguilar C,
    2. Guerrero-Carrillo MdJ,
    3. Espinosa-Aguirre JJ,
    4. Olguin-Reyes S,
    5. Castro-Belio T,
    6. Vázquez-Martínez O, et al.
    Time-caloric restriction inhibits the neoplastic transformation of cirrhotic liver in rats treated with diethylnitrosamine. Carcinogenesis. 2017; 38: 847–58.
    OpenUrl
  131. 131.↵
    1. Krizkova S,
    2. Kepinska M,
    3. Emri G,
    4. Rodrigo MAM,
    5. Tmejova K,
    6. Nerudova D, et al.
    Microarray analysis of metallothioneins in human diseases--A review. J Pharm Biomed Anal, 2016; 117: 464–73.
    OpenUrl
  132. 132.
    1. Fujie T,
    2. Segawa Y,
    3. Yoshida E,
    4. Kimura T,
    5. Fujiwara Y,
    6. Yamamoto C, et al.
    Induction of metallothionein isoforms by copper diethyldithiocarbamate in cultured vascular endothelial cells. J Toxicol Sci. 2016; 41: 225–32.
    OpenUrl
  133. 133.↵
    1. Klaassen CD,
    2. Liu J,
    3. Choudhuri S.
    Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999; 39: 267–94.
    OpenUrlCrossRefPubMedWeb of Science
  134. 134.↵
    1. Li H,
    2. Lu YF,
    3. Chen H,
    4. Liu J.
    Dysregulation of metallothionein and circadian genes in human hepatocellular carcinoma. Chronobiol Int. 2017; 34: 192–202.
    OpenUrl
  135. 135.↵
    1. Hill SM,
    2. Belancio VP,
    3. Dauchy RT,
    4. Xiang S,
    5. Brimer S,
    6. Mao L, et al.
    Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer. 2015; 22: R183–204.
    OpenUrlAbstract/FREE Full Text
  136. 136.
    1. Reiter RJ,
    2. Rosales-Corral SA,
    3. Tan DX,
    4. Acuna-Castroviejo D,
    5. Qin L,
    6. Yang SF, et al.
    Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci. 2017; 18: 843.
    OpenUrl
  137. 137.↵
    1. Li Y,
    2. Li S,
    3. Zhou Y,
    4. Meng X,
    5. Zhang JJ,
    6. Xu DP, et al.
    Melatonin for the prevention and treatment of cancer. Oncotarget. 2017; 8: 39896–921.
    OpenUrlPubMed
  138. 138.↵
    1. Sánchez DI,
    2. González-Fernández B,
    3. Crespo I,
    4. San-Miguel B,
    5. Álvarez M,
    6. González-Gallego J, et al.
    Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res. 2018; 65: e12506.
  139. 139.↵
    1. Sladek FM,
    2. Zhong WM,
    3. Lai E,
    4. Darnell JE.
    Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev. 1990; 4: 2353–65.
    OpenUrlAbstract/FREE Full Text
  140. 140.↵
    1. Battle MA,
    2. Konopka G,
    3. Parviz F,
    4. Gaggl AL,
    5. Yang C,
    6. Sladek FM, et al.
    Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci U S A. 2006; 103: 8419–24.
    OpenUrlAbstract/FREE Full Text
  141. 141.↵
    1. Bonzo JA,
    2. Ferry CH,
    3. Matsubara T,
    4. Kim JH,
    5. Gonzalez FJ.
    Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J Biol Chem. 2012; 287: 7345–56.
    OpenUrlAbstract/FREE Full Text
  142. 142.↵
    1. Chellappa K,
    2. Deol P,
    3. Evans JR,
    4. Vuong LM,
    5. Chen G,
    6. Briançon N, et al.
    Opposing roles of nuclear receptor HNF4α isoforms in colitis and colitis-associated colon cancer. ELife. 2016; 5: e10903.
  143. 143.
    1. Walesky C,
    2. Apte U.
    Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and cancer. Gene Expr. 2015; 16: 101–8.
    OpenUrlCrossRefPubMed
  144. 144.
    1. Vuong LM,
    2. Chellappa K,
    3. Dhahbi JM,
    4. Deans JR,
    5. Fang B,
    6. Bolotin E, et al.
    Differential effects of hepatocyte nuclear factor 4α isoforms on tumor growth and T-cell factor 4/AP-1 interactions in human colorectal cancer cells. Mol Cell Biol. 2015; 35: 3471–90.
    OpenUrlAbstract/FREE Full Text
  145. 145.↵
    1. Ning BF,
    2. Ding J,
    3. Yin C,
    4. Zhong W,
    5. Wu K,
    6. Zeng X, et al.
    Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res. 2010; 70: 7640–51.
    OpenUrlAbstract/FREE Full Text
  146. 146.↵
    1. Hatziapostolou M,
    2. Polytarchou C,
    3. Aggelidou E,
    4. Drakaki A,
    5. Poultsides GA,
    6. Jaeger SA, et al.
    An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell. 2011; 147: 1233–47.
    OpenUrlCrossRefPubMedWeb of Science
  147. 147.↵
    1. Walesky C,
    2. Edwards G,
    3. Borude P,
    4. Gunewardena S,
    5. O’Neil M,
    6. Yoo B, et al.
    Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents. Hepatology. 2013; 57: 2480–90.
    OpenUrlCrossRefPubMedWeb of Science
  148. 148.↵
    1. Tanaka T,
    2. Jiang S,
    3. Hotta H,
    4. Takano K,
    5. Iwanari H,
    6. Sumi K, et al.
    Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4alpha in the pathogenesis of human cancer. J Pathol. 2006; 208: 662–72.
    OpenUrlCrossRefPubMedWeb of Science
  149. 149.↵
    1. Chellappa K,
    2. Jankova L,
    3. Schnabl JM,
    4. Pan S,
    5. Brelivet Y,
    6. Fung CLS, et al.
    Src tyrosine kinase phosphorylation of nuclear receptor HNF4α correlates with isoform-specific loss of HNF4α in human colon cancer. Proc Natl Acad Sci U S A. 2012; 109: 2302–7.
    OpenUrlAbstract/FREE Full Text
  150. 150.↵
    1. Fekry B,
    2. Ribas-Latre A,
    3. Baumgartner C,
    4. Deans JR,
    5. Kwok C,
    6. Patel P, et al.
    Incompatibility of the circadian protein BMAL1 and HNF4α in hepatocellular carcinoma. Nat Commun. 2018; 9: 4349.
    OpenUrlCrossRef
  151. 151.↵
    1. Biller LH,
    2. Schrag D.
    Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021; 325: 669–85.
    OpenUrlCrossRefPubMed
  152. 152.
    1. Sung H,
    2. Ferlay J,
    3. Siegel RL,
    4. Laversanne M,
    5. Soerjomataram I,
    6. Jemal A, et al.
    Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71: 209–49.
    OpenUrlCrossRefPubMed
  153. 153.↵
    1. Siegel RL,
    2. Medhanie GA,
    3. Fedewa SA,
    4. Jemal A.
    State variation in early-onset colorectal cancer in the United States, 1995-2015. J Natl Cancer Inst. 2019; 111: 1104–6.
    OpenUrl
  154. 154.↵
    1. Zhang Y,
    2. Devocelle A,
    3. Souza L,
    4. Foudi A,
    5. Tenreira Bento S,
    6. Desterke C, et al.
    BMAL1 knockdown triggers different colon carcinoma cell fates by altering the delicate equilibrium between AKT/mTOR and P53/P21 pathways. Aging. 2020; 12: 8067–83.
    OpenUrl
  155. 155.↵
    1. Stokes K,
    2. Nunes M,
    3. Trombley C,
    4. Flôres DEFL,
    5. Wu G,
    6. Taleb Z, et al.
    The circadian clock gene, Bmal1, regulates intestinal stem cell signaling and represses tumor initiation. Cell Mol Gastroenterol Hepatol. 2021; 12: 1847–72.
    OpenUrl
  156. 156.↵
    1. Liu JL,
    2. Wang CY,
    3. Cheng TY,
    4. Rixiati Y,
    5. Ji C,
    6. Deng M, et al.
    Circadian clock disruption suppresses PDL1 intraepithelial B cells in experimental colitis and colitis-associated colorectal cancer. Cell Mol Gastroenterol Hepatol. 2021; 12: 251–76.
    OpenUrl
  157. 157.↵
    1. Zhang Y,
    2. Ma J,
    3. Zhang S,
    4. Deng G,
    5. Wu X,
    6. He J, et al.
    A prognostic analysis of 895 cases of stage III colon cancer in different colon subsites. Int J Colorectal Dis. 2015; 30: 1173–83.
    OpenUrlCrossRef
  158. 158.↵
    1. Huisman SA,
    2. Oklejewicz M,
    3. Ahmadi AR,
    4. Tamanini F,
    5. Ijzermans JNM,
    6. van der Horst GTJ, et al.
    Colorectal liver metastases with a disrupted circadian rhythm phase shift the peripheral clock in liver and kidney. Int J Cancer. 2015; 136: 1024–32.
    OpenUrlPubMed
  159. 159.↵
    1. Dong P,
    2. Wang Y,
    3. Liu Y,
    4. Zhu C,
    5. Lin J,
    6. Qian R, et al.
    BMAL1 induces colorectal cancer metastasis by stimulating exosome secretion. Mol Biol Rep. 2022; 49: 373–84.
    OpenUrl
  160. 160.↵
    1. Siegel RL,
    2. Miller KD,
    3. Jemal A.
    Cancer statistics, 2018. CA Cancer J Clin. 2018; 68: 7–30.
    OpenUrlCrossRefPubMed
  161. 161.↵
    1. Dai X,
    2. Li T,
    3. Bai Z,
    4. Yang Y,
    5. Liu X,
    6. Zhan J, et al.
    Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015; 5: 2929–43.
    OpenUrlCrossRefPubMed
  162. 162.↵
    1. Xiang S,
    2. Mao L,
    3. Duplessis T,
    4. Yuan L,
    5. Dauchy R,
    6. Dauchy E, et al.
    Oscillation of clock and clock controlled genes induced by serum shock in human breast epithelial and breast cancer cells: regulation by melatonin. Breast Cancer (Auckl). 2012; 6: 137–50.
    OpenUrlCrossRefPubMed
  163. 163.↵
    1. Rossetti S,
    2. Esposito J,
    3. Corlazzoli F,
    4. Gregorski A,
    5. Sacchi N.
    Entrainment of breast (cancer) epithelial cells detects distinct circadian oscillation patterns for clock and hormone receptor genes. Cell Cycle. 2012; 11: 350–60.
    OpenUrlCrossRefPubMed
  164. 164.↵
    1. Lesicka M,
    2. Jabłońska E,
    3. Wieczorek E,
    4. Seroczyńska B,
    5. Siekierzycka A,
    6. Skokowski J, et al.
    Altered circadian genes expression in breast cancer tissue according to the clinical characteristics. PLoS One. 2018; 13: e0199622.
  165. 165.↵
    1. Broadberry E,
    2. McConnell J,
    3. Williams J,
    4. Yang N,
    5. Zindy E,
    6. Leek A, et al.
    Disrupted circadian clocks and altered tissue mechanics in primary human breast tumours. Breast Cancer Res. 2018; 20: 125.
    OpenUrl
  166. 166.↵
    1. Korkmaz T,
    2. Aygenli F,
    3. Emisoglu H,
    4. Ozcelik G,
    5. Canturk A,
    6. Yilmaz S, et al.
    Opposite carcinogenic effects of circadian clock gene BMAL1. Sci Rep. 2018; 8: 16023.
    OpenUrlCrossRefPubMed
  167. 167.↵
    1. Kwon YJ,
    2. Seo EB,
    3. Kwon SH,
    4. Lee SH,
    5. Kim SK,
    6. Park SK, et al.
    Extracellular Acidosis Promotes Metastatic Potency via Decrease of the BMAL1 Circadian Clock Gene in Breast Cancer. Cells. 2020; 9: 989.
    OpenUrl
  168. 168.↵
    1. Sharma D,
    2. Kumar S,
    3. Narasimhan B.
    Estrogen alpha receptor antagonists for the treatment of breast cancer: a review. Chem Cent J. 2018; 12: 107.
    OpenUrl
  169. 169.↵
    1. Xie F,
    2. Wang L,
    3. Liu Y,
    4. Liu Z,
    5. Zhang Z,
    6. Pei J, et al.
    ASMT regulates tumor metastasis through the circadian clock system in triple-negative breast cancer. Front Oncol. 2020; 10: 537247.
  170. 170.↵
    1. Boese AC,
    2. Kang S.
    Tumor progression of breast cancer during hyperinsulinemic obesity. Trends Mol Med. 2020; 26: 354–6.
    OpenUrl
  171. 171.↵
    1. Hambardzumyan D,
    2. Gutmann DH,
    3. Kettenmann H.
    The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016; 19: 20–7.
    OpenUrlCrossRefPubMed
  172. 172.↵
    1. Mantovani A,
    2. Sica A,
    3. Sozzani S,
    4. Allavena P,
    5. Vecchi A,
    6. Locati M.
    The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004; 25: 677–86.
    OpenUrlCrossRefPubMedWeb of Science
  173. 173.
    1. Verreck FAW,
    2. de Boer T,
    3. Langenberg DML,
    4. Hoeve MA,
    5. Kramer M,
    6. Vaisberg E, et al.
    Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A. 2004; 101: 4560–5.
    OpenUrlAbstract/FREE Full Text
  174. 174.↵
    1. Qin C,
    2. Zhou LQ,
    3. Ma XT,
    4. Hu ZW,
    5. Yang S,
    6. Chen M, et al.
    Dual functions of microglia in ischemic stroke. Neurosci Bull. 2019; 35: 921–33.
    OpenUrlPubMed
  175. 175.↵
    1. Li X,
    2. Guan J,
    3. Jiang Z,
    4. Cheng S,
    5. Hou W,
    6. Yao J, et al.
    Microglial exosome miR-7239-3p promotes glioma progression by regulating circadian genes. Neurosci Bull. 2021; 37: 497–510.
    OpenUrl
  176. 176.↵
    1. de Assis LVM,
    2. Mendes D,
    3. Silva MM,
    4. Kinker GS,
    5. Pereira-Lima I,
    6. Moraes MN, et al.
    Melanopsin mediates UVA-dependent modulation of proliferation, pigmentation, apoptosis, and molecular clock in normal and malignant melanocytes. Biochim Biophys Acta Mol Cell Res. 2020; 1867: 118789.
  177. 177.↵
    1. de Assis LVM,
    2. Moraes MN,
    3. da Silveira Cruz-Machado S,
    4. Castrucci AML.
    The effect of white light on normal and malignant murine melanocytes: a link between opsins, clock genes, and melanogenesis. Biochim Biophys Acta. 2016; 1863: 1119–33.
    OpenUrl
  178. 178.↵
    1. Zhanfeng N,
    2. Yanhui L,
    3. Zhou F,
    4. Shaocai H,
    5. Guangxing L,
    6. Hechun X.
    Circadian genes Per1 and Per2 increase radiosensitivity of glioma in vivo. Oncotarget 2015; 6: 9951–8.
    OpenUrlCrossRef
  179. 179.
    1. Shen H,
    2. Cook K,
    3. Gee HE,
    4. Hau E.
    Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res CR. 2020; 39: 129.
    OpenUrl
  180. 180.
    1. Wagner PM,
    2. Prucca CG,
    3. Velazquez FN,
    4. Sosa Alderete LG,
    5. Caputto BL,
    6. Guido ME.
    Temporal regulation of tumor growth in nocturnal mammals: in vivo studies and chemotherapeutical potential. FASEB J. 2021; 35: e21231.
  181. 181.↵
    1. Katamune C,
    2. Koyanagi S,
    3. Hashikawa KI,
    4. Kusunose N,
    5. Akamine T,
    6. Matsunaga N, et al.
    Mutation of the gene encoding the circadian clock component PERIOD2 in oncogenic cells confers chemoresistance by up-regulating the Aldh3a1 gene. J Biol Chem. 2019; 294: 547–58.
    OpenUrlAbstract/FREE Full Text
  182. 182.↵
    1. Ferrara N,
    2. Hillan KJ,
    3. Gerber HP,
    4. Novotny W.
    Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004; 3: 391–400.
    OpenUrlCrossRefPubMedWeb of Science
  183. 183.↵
    1. De Palma M,
    2. Biziato D,
    3. Petrova TV.
    Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017; 17: 457–74.
    OpenUrlCrossRefPubMed
  184. 184.↵
    1. Koyanagi S,
    2. Kuramoto Y,
    3. Nakagawa H,
    4. Aramaki H,
    5. Ohdo S,
    6. Soeda S, et al.
    A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003; 63: 7277–83.
    OpenUrlAbstract/FREE Full Text
  185. 185.
    1. Peek CB,
    2. Levine DC,
    3. Cedernaes J,
    4. Taguchi A,
    5. Kobayashi Y,
    6. Tsai SJ, et al.
    Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metabolism. 2017; 25: 86–92.
    OpenUrl
  186. 186.↵
    1. Ma Z,
    2. Jin X,
    3. Qian Z,
    4. Li F,
    5. Xu M,
    6. Zhang Y, et al.
    Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway. Cell Cycle. 2019; 18: 1473–89.
    OpenUrl
  187. 187.↵
    1. Burgermeister E,
    2. Battaglin F,
    3. Eladly F,
    4. Wu W,
    5. Herweck F,
    6. Schulte N, et al.
    Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A. EBioMedicine. 2019; 45: 139–54.
    OpenUrl
  188. 188.↵
    1. Thiery JP,
    2. Acloque H,
    3. Huang RYJ,
    4. Nieto MA.
    Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139: 871–90.
    OpenUrlCrossRefPubMedWeb of Science
  189. 189.↵
    1. Zhang J,
    2. Tian XJ,
    3. Xing J.
    Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks. J Clin Med. 2016; 5: 41.
    OpenUrl
  190. 190.↵
    1. Jeanes A,
    2. Gottardi CJ,
    3. Yap AS.
    Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008; 27: 6920–9.
    OpenUrlCrossRefPubMedWeb of Science
  191. 191.↵
    1. Zhang Y,
    2. Devocelle A,
    3. Desterke C,
    4. de Souza LEB,
    5. Hadadi É,
    6. Acloque H, et al.
    BMAL1 knockdown leans epithelial-mesenchymal balance toward epithelial properties and decreases the chemoresistance of colon carcinoma cells. Int J Mol Sci. 2021; 22: 5247.
    OpenUrl
  192. 192.↵
    1. Slat EA,
    2. Sponagel J,
    3. Marpegan L,
    4. Simon T,
    5. Kfoury N,
    6. Kim A, et al.
    Cell-intrinsic, Bmal1-dependent circadian regulation of temozolomide sensitivity in glioblastoma. J Biol Rhythms. 2017; 32: 121–9.
    OpenUrlCrossRef
  193. 193.↵
    1. Wagner PM,
    2. Sosa Alderete LG,
    3. Gorné LD,
    4. Gaveglio V,
    5. Salvador G,
    6. Pasquaré S, et al.
    Proliferative glioblastoma cancer cells exhibit persisting temporal control of metabolism and display differential temporal drug susceptibility in chemotherapy. Mol Neurobiol. 2019; 56: 1276–92.
    OpenUrl
  194. 194.↵
    1. Jiang W,
    2. Zhao S,
    3. Shen J,
    4. Guo L,
    5. Sun Y,
    6. Zhu Y, et al.
    The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis. 2018; 9: 149.
    OpenUrlCrossRef
  195. 195.↵
    1. Tang Q,
    2. Cheng B,
    3. Xie M,
    4. Chen Y,
    5. Zhao J,
    6. Zhou X, et al.
    Circadian clock gene Bmal1 inhibits tumorigenesis and increases paclitaxel sensitivity in tongue squamous cell carcinoma. Cancer Res. 2017; 77: 532–44.
    OpenUrlAbstract/FREE Full Text
  196. 196.↵
    1. Trebucq LL,
    2. Cardama GA,
    3. Lorenzano Menna P,
    4. Golombek DA,
    5. Chiesa JJ,
    6. Marpegan L.
    Timing of novel drug 1A-116 to circadian rhythms improves therapeutic effects against glioblastoma. Pharmaceutics. 2021; 13: 1091.
    OpenUrl
  197. 197.↵
    1. Cardama GA,
    2. Gonzalez N,
    3. Ciarlantini M,
    4. Gandolfi Donadío L,
    5. Comin MJ,
    6. Alonso DF, et al.
    Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. OncoTargets and Therapy, 2014; 7: 2021–33.
    OpenUrl
  198. 198.
    1. Cabrera M,
    2. Echeverria E,
    3. Lenicov FR,
    4. Cardama G,
    5. Gonzalez N,
    6. Davio C, et al.
    Pharmacological Rac1 inhibitors with selective apoptotic activity in human acute leukemic cell lines. Oncotarget, 2017; 8: 98509–23.
    OpenUrl
  199. 199.
    1. Parri M,
    2. Chiarugi P.
    Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal. 2010; 8: 23.
    OpenUrlCrossRefPubMed
  200. 200.↵
    1. Ridley AJ.
    Rho GTPase signalling in cell migration. Curr Opin Cell Biol. 2015; 36: 103–12.
    OpenUrlCrossRefPubMed
  201. 201.↵
    1. Teixeira AAS,
    2. Biondo LA,
    3. Silveira LS,
    4. Lima EA,
    5. Batatinha HA,
    6. Diniz TA, et al.
    Doxorubicin modulated clock genes and cytokines in macrophages extracted from tumor-bearing mice. Cancer Biol Ther. 2020; 21: 344–53.
    OpenUrl
  202. 202.↵
    1. Mendes MCS,
    2. Pimentel GD,
    3. Costa FO,
    4. Carvalheira JBC.
    Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol. 2015; 226: R29–43.
    OpenUrlAbstract/FREE Full Text
  203. 203.
    1. Kinsey E,
    2. Ajazi E,
    3. Wang X,
    4. Johnston MAM,
    5. Crawford J.
    Predictors of physical and functional loss in advanced-stage lung cancer patients receiving platinum chemotherapy. J Thorac Oncol. 2018; 13: 1294–301.
    OpenUrl
  204. 204.↵
    1. Muliawati Y,
    2. Haroen H,
    3. Rotty LWA.
    Cancer anorexia - cachexia syndrome. Acta Med Indones. 2012; 44: 154–62.
    OpenUrlPubMed
  205. 205.↵
    1. von Haehling S,
    2. Anker SD.
    Cachexia as major underestimated unmet medical need: facts and numbers. Int J Cardiol. 2012; 161: 121–3.
    OpenUrlCrossRefPubMed
  206. 206.↵
    1. Colldén G,
    2. Tschöp MH,
    3. Müller TD.
    Therapeutic potential of targeting the ghrelin pathway. Int J Mol Sci. 2017; 18: 798.
    OpenUrl
  207. 207.
    1. Chen JA,
    2. Splenser A,
    3. Guillory B,
    4. Luo J,
    5. Mendiratta M,
    6. Belinova B, et al.
    Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J Cachexia Sarcopenia Muscle. 2015; 6: 132–3.
    OpenUrl
  208. 208.
    1. Hatanaka M,
    2. Konishi M,
    3. Ishida J,
    4. Saito M,
    5. Springer J.
    Novel mechanism of ghrelin therapy for cachexia. J Cachexia Sarcopenia Muscle. 2015; 6: 393.
    OpenUrl
  209. 209.↵
    1. Lundholm K,
    2. Gunnebo L,
    3. Körner U,
    4. Iresjö BM,
    5. Engström C,
    6. Hyltander A, et al.
    Effects by daily long term provision of ghrelin to unselected weight-losing cancer patients: a randomized double-blind study. Cancer. 2010; 116: 2044–52.
    OpenUrlCrossRefPubMed
  210. 210.↵
    1. Doruk YU,
    2. Yarparvar D,
    3. Akyel YK,
    4. Gul S,
    5. Taskin AC,
    6. Yilmaz F, et al.
    A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude. J Biol Chem. 2020; 295: 3518–31.
    OpenUrlAbstract/FREE Full Text
  211. 211.↵
    1. Saxton RA,
    2. Sabatini DM.
    mTOR signaling in growth, metabolism, and disease. Cell. 2017; 169: 361–71.
    OpenUrlCrossRefPubMed
  212. 212.
    1. Shimobayashi M,
    2. Hall MN.
    Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014; 15: 155–62.
    OpenUrlCrossRefPubMed
  213. 213.
    1. González A,
    2. Hall MN.
    Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017; 36: 397–408.
    OpenUrlAbstract/FREE Full Text
  214. 214.↵
    1. Hay N,
    2. Sonenberg N.
    Upstream and downstream of mTOR. Genes Dev. 2004; 18: 1926–45.
    OpenUrlAbstract/FREE Full Text
  215. 215.↵
    1. Matsumoto CS,
    2. Almeida LO,
    3. Guimarães DM,
    4. Martins MD,
    5. Papagerakis P,
    6. Papagerakis S, et al.
    PI3K-PTEN dysregulation leads to mTOR-driven upregulation of the core clock gene BMAL1 in normal and malignant epithelial cells. Oncotarget. 2016; 7: 42393–407.
    OpenUrl
  216. 216.↵
    1. Bobrovnikova-Marjon E,
    2. Grigoriadou C,
    3. Pytel D,
    4. Zhang F,
    5. Ye J,
    6. Koumenis C, et al.
    PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene. 2010; 29: 3881–95.
    OpenUrlCrossRefPubMedWeb of Science
  217. 217.
    1. Pytel D,
    2. Gao Y,
    3. Mackiewicz K,
    4. Katlinskaya YV,
    5. Staschke KA,
    6. Paredes MCG, et al.
    PERK is a haploinsufficient tumor suppressor: gene dose determines tumor-suppressive versus tumor promoting properties of PERK in melanoma. PLoS Genet. 2016; 12: e1006518.
  218. 218.↵
    1. Bhattacharya S,
    2. HuangFu WC,
    3. Dong G,
    4. Qian J,
    5. Baker DP,
    6. Karar J, et al.
    Anti-tumorigenic effects of Type 1 interferon are subdued by integrated stress responses. Oncogene. 2013; 32: 4214–21.
    OpenUrlCrossRefPubMed
  219. 219.↵
    1. Lee Y,
    2. Fong SY,
    3. Shon J,
    4. Zhang SL,
    5. Brooks R,
    6. Lahens NF, et al.
    Time-of-day specificity of anticancer drugs may be mediated by circadian regulation of the cell cycle. Sci. Adv. 2021; 7: eabd2645.
  220. 220.↵
    1. Isakoff MS,
    2. Bielack SS,
    3. Meltzer P,
    4. Gorlick R.
    Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015; 33: 3029–35.
    OpenUrlAbstract/FREE Full Text
  221. 221.↵
    1. Tang QL,
    2. Xie XB,
    3. Wang J,
    4. Chen Q,
    5. Han AJ,
    6. Zou CY, et al.
    Glycogen synthase kinase-3β, NF-κB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Ins. 2012; 104: 749–63.
    OpenUrlCrossRefPubMedWeb of Science
  222. 222.↵
    1. Liu HC,
    2. Enikolopov G,
    3. Chen Y.
    Cul4B regulates neural progenitor cell growth. BMC Neurosci. 2012; 13: 112.
    OpenUrlCrossRefPubMed
  223. 223.
    1. Soucy TA,
    2. Smith PG,
    3. Milhollen MA,
    4. Berger AJ,
    5. Gavin JM,
    6. Adhikari S, et al.
    An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009; 458: 732–6.
    OpenUrlCrossRefPubMedWeb of Science
  224. 224.
    1. Nawrocki ST,
    2. Griffin P,
    3. Kelly KR,
    4. Carew JS.
    MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs. 2012; 21: 1563–73.
    OpenUrlCrossRefPubMed
  225. 225.
    1. Khalife J,
    2. Radomska HS,
    3. Santhanam R,
    4. Huang X,
    5. Neviani P,
    6. Saultz J, et al.
    Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia. Leukemia. 2015; 29: 1981–92.
    OpenUrlCrossRef
  226. 226.
    1. Chen P,
    2. Hu T,
    3. Liang Y,
    4. Jiang Y,
    5. Pan Y,
    6. Li C, et al.
    Synergistic inhibition of autophagy and neddylation pathways as a novel therapeutic approach for targeting liver cancer. Oncotarget. 2015; 6: 9002–17.
    OpenUrlCrossRefPubMed
  227. 227.↵
    1. Kuo KL,
    2. Ho IL,
    3. Shi CS,
    4. Wu JT,
    5. Lin WC,
    6. Tsai YC, et al.
    MLN4924, a novel protein neddylation inhibitor, suppresses proliferation and migration of human urothelial carcinoma: In vitro and in vivo studies. Cancer Lett. 2015; 363: 127–36.
    OpenUrl
  228. 228.↵
    1. Zhang S,
    2. Zhang J,
    3. Deng Z,
    4. Liu H,
    5. Mao W,
    6. Jiang F, et al.
    Circadian clock components RORα and Bmal1 mediate the anti-proliferative effect of MLN4924 in osteosarcoma cells. Oncotarget. 2016; 7: 66087–99.
    OpenUrl
  229. 229.↵
    1. Yu X,
    2. Rollins D,
    3. Ruhn KA,
    4. Stubblefield JJ,
    5. Green CB,
    6. Kashiwada M, et al.
    TH17 cell differentiation is regulated by the circadian clock. Science. 2013; 342: 727–30.
    OpenUrlAbstract/FREE Full Text
  230. 230.↵
    1. Hand LE,
    2. Gray KJ,
    3. Dickson SH,
    4. Simpkins DA,
    5. Ray DW,
    6. Konkel JE, et al.
    Regulatory T cells confer a circadian signature on inflammatory arthritis. Nat Commun. 2020; 11: 1658.
    OpenUrl
  231. 231.↵
    1. Hu X,
    2. Liu X,
    3. Moisan J,
    4. Wang Y,
    5. Lesch CA,
    6. Spooner C, et al.
    Synthetic RORγ agonists regulate multiple pathways to enhance antitumor immunity. Oncoimmunology. 2016; 5: e1254854.
  232. 232.↵
    1. Mullins D,
    2. Proulx D,
    3. Saoudi A,
    4. Ng CE.
    Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity. Int J Radiat Oncol Biol Phys. 2005; 62: 230–7.
    OpenUrlPubMed
  233. 233.↵
    1. Ozturk N,
    2. Ozturk D,
    3. Pala-Kara Z,
    4. Kaptan E,
    5. Sancar-Bas S,
    6. Ozsoy N, et al.
    The immune system as a chronotoxicity target of the anticancer mTOR inhibitor everolimus. Chronobiol Int. 2018; 35: 705–s18.
    OpenUrl
PreviousNext
Back to top

In this issue

Cancer Biology & Medicine: 20 (1)
Cancer Biology & Medicine
Vol. 20, Issue 1
15 Jan 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Cancer Biology & Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Major roles of the circadian clock in cancer
(Your Name) has sent you a message from Cancer Biology & Medicine
(Your Name) thought you would like to see the Cancer Biology & Medicine web site.
Citation Tools
Major roles of the circadian clock in cancer
Chen Huang, Chenliang Zhang, Yubin Cao, Jian Li, Feng Bi
Cancer Biology & Medicine Jan 2023, 20 (1) 1-24; DOI: 10.20892/j.issn.2095-3941.2022.0474

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Major roles of the circadian clock in cancer
Chen Huang, Chenliang Zhang, Yubin Cao, Jian Li, Feng Bi
Cancer Biology & Medicine Jan 2023, 20 (1) 1-24; DOI: 10.20892/j.issn.2095-3941.2022.0474
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Methods
    • Circadian clock and cancer
    • The mechanisms of the circadian clock in cancer progression
    • CLOCK and the potential molecular mechanisms of tumorigenesis
    • Effects of CLOCK components in specific cancers
    • Circadian clock and cancer treatment
    • Potential therapeutic targets or drugs
    • Focus on therapeutic approaches associated with circadian-mediated immune responses
    • Conclusion and perspectives
    • Supporting Information
    • Grant support
    • Conflict of interest statement
    • Author contributions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Nanomedicine-based combination therapies for overcoming temozolomide resistance in glioblastomas
  • Smart drug delivery systems to overcome drug resistance in cancer immunotherapy
  • Facing challenges with hope: universal immune cells for hematologic malignancies
Show more Review

Similar Articles

Keywords

  • Circadian clock
  • BMAL1
  • cancer
  • tumor therapy
  • oncology

Navigate

  • Home
  • Current Issue

More Information

  • About CBM
  • About CACA
  • About TMUCIH
  • Editorial Board
  • Subscription

For Authors

  • Instructions for authors
  • Journal Policies
  • Submit a Manuscript

Journal Services

  • Email Alerts
  • Facebook
  • RSS Feeds
  • Twitter

 

© 2023 Cancer Biology & Medicine

Powered by HighWire