Skip to main content

Advertisement

Log in

Sox2 Gene Amplification Significantly Impacts Overall Survival in Serous Epithelial Ovarian Cancer

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Epithelial ovarian cancer (EOC) is the deadliest gynecologic cancer. Recently, the existence of ovarian cancer stem cells has been reported. Sox2, Nanog and Oct4 are key markers of “stemness”. The objective of this study was to determine whether Sox2, Nanog, and Oct4 are associated with EOC and poor outcome. The expression of these markers was assessed by immunofluorescence staining and real-time RT-PCR in human EOC cell lines MDAH-2774 and SKOV-3, while the cancer genome atlas (TCGA) dataset was analyzed for associations with survival. Sox2, Nanog and Oct4 (POU5F1) were all detected by immunofluorescence staining and these results were confirmed by real-time RT-PCR. The TCGA dataset revealed a 26%, 9%, and 6% amplification of Sox2, Nanog and POU5F1, respectively. Additionally, K-M survival analyses showed a significant median overall survival difference (41 versus 48.3 months, P = .01) for Sox2 amplification, but not for Nanog (44.1 versus 36.2 months, P > .05) and POU5F1 (43.5 versus 45.0 months, P > .05). Our results suggest that Sox2 gene amplification significantly influences overall survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1): 11–30.

    Article  PubMed  Google Scholar 

  2. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351(24): 2519–2529.

    Article  CAS  PubMed  Google Scholar 

  3. Chung DC, Rustgi AK. The hereditary nonpolyposis colorectal cancer syndrome: genetics and clinical implications. Ann Intern Med. 2003;138(7):560–570.

    Article  CAS  PubMed  Google Scholar 

  4. Schildkraut JM, Thompson WD. Familial ovarian cancer: a population-based case-control study. Am J Epidemiol. 1988; 128(3):456–466.

    Article  CAS  PubMed  Google Scholar 

  5. Whittemore AS. Characteristics relating to ovarian cancer risk: implications for prevention and detection. Gynecol Oncol. 1994; 55(3 pt 2):S15–S19.

    Article  CAS  PubMed  Google Scholar 

  6. Hankinson SE, Hunter DJ, Colditz GA, et al. Tubal ligation, hysterectomy, and risk of ovarian cancer. A prospective study. JAMA. 1993;270(23):2813–2818.

    Article  CAS  PubMed  Google Scholar 

  7. Ho SM. Estrogen, progesterone and epithelial ovarian cancer. Reprod Biol Endocrinol. 2003 ;1:73.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Minegishi K, Tanaka M, Nishimura O, et al. Reactive oxygen species mediate leukocyte-endothelium interactions in prostaglandin F2alpha-induced luteolysis in rats. Am J Physiol Endocrinol Metab. 2002;283(6):E1308–E1315.

    Article  CAS  PubMed  Google Scholar 

  9. Shirai F, Kawaguchi M, Yutsudo M, Dohi Y. Human peripheral blood polymorphonuclear leukocytes at the ovulatory period are in an activated state. Mol Cell Endocrinol. 2002; 196(l–2):21–28.

    Article  CAS  PubMed  Google Scholar 

  10. Behrman HR, Kodaman PH, Preston SL, Gao S. Oxidative stress and the ovary. J Soc Gynecol Investig. 2001; 8(1 suppl proceed-ings):S40–S42.

    CAS  PubMed  Google Scholar 

  11. Guo R, Wu Q, Liu F, Wang Y. Description of the CD133+ sub-population of the human ovarian cancer cell line OVCAR3. Oncol Rep. 2011;25(1):141–146.

    CAS  PubMed  Google Scholar 

  12. Hussenet T, Dali S, Exinger J, et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One. 2010;5(l):e8960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Katoh M, Katoh M.Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer. Int J Oncol. 2007;31(2):461–466.

    CAS  PubMed  Google Scholar 

  14. Lu Y, Futtner C, Rock JR, et al. Evidence that SOX2 overexpres-sion is oncogenic in the lung. PLoS One. 2010;5(6):ell022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tani Y, Akiyama Y, Fukamachi H, Yanagihara K, Yuasa Y. Transcription factor SOX2 up-regulates stomach-specific pepsinogen a gene expression. J Cancer Res Clin Oncol. 2007; 133(4): 263–269.

    Article  CAS  PubMed  Google Scholar 

  16. Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem. 2010; 285(53):41961–41971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(ll):4311–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001 ;414(6859): 105–111.

    Article  CAS  PubMed  Google Scholar 

  19. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–737.

    Article  CAS  PubMed  Google Scholar 

  20. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18): 5821–5828.

    CAS  PubMed  Google Scholar 

  21. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–110.

    Article  PubMed  CAS  Google Scholar 

  23. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3): 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  24. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391):1145–1147.

    Article  CAS  PubMed  Google Scholar 

  25. Casati A, Frascoli M, Traggiai E, Proietti M, Schenk U, Grassi F. Cell-autonomous regulation of hematopoietic stem cell cycling activity by ATP. Cell Death Differ. 2011;18(3): 396–404.

    Article  CAS  PubMed  Google Scholar 

  26. Abdelalim EM, Tooyama I. NPR-A regulates self-renewal and pluripotency of embryonic stem cells. Cell Death Dis. 2011;2: el27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richly H, Aloia L, Di Croce L. Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis. 2011 ;2:e204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643–655.

    Article  CAS  PubMed  Google Scholar 

  29. Molofsky AV, Pardal R, Morrison SJ. Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol. 2004; 16(6): 700–707.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872.

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676.

    Article  CAS  PubMed  Google Scholar 

  32. Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notchl signaling. Nat Med. 2000;6(11): 1278–1281.

    Article  CAS  PubMed  Google Scholar 

  33. Karanu FN, Murdoch B, Gallacher L, et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med. 2000;192(9):1365–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2001;2(2):172–180.

    Article  CAS  PubMed  Google Scholar 

  35. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  36. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;ll(24):3286–3305.

    Article  CAS  PubMed  Google Scholar 

  37. Reya T, O’Riordan M, Okamura R, et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity. 2000;13(1): 15–24.

    Article  CAS  PubMed  Google Scholar 

  38. Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W. A role for the Wnt gene family in hematopoiesis: expansion of multiline-age progenitor cells. Blood. 1997;89(10):3624–3635.

    Article  CAS  PubMed  Google Scholar 

  39. Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R. Role of members of the Wnt gene family in human hematopoiesis. Blood. 1998;92(9):3189–3202.

    Article  Google Scholar 

  40. Daheron L, Opitz SL, Zaehres H, et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells. 2004;22(5):770–778.

    Article  CAS  PubMed  Google Scholar 

  41. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science. 2002; 298(5593):601–604.

    Article  CAS  PubMed  Google Scholar 

  42. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–615.

    Article  CAS  Google Scholar 

  43. Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–1068.

    Article  CAS  Google Scholar 

  44. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang XV, Verhaak RG, Purdom E, Spellman PT, Speed TP. Unifying gene expression measures from multiple platforms using factor analysis. PLoS One. 2011;6(3):el7691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verhaak RG, Tamayo P, Yang JY, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123(l):517–525.

    CAS  PubMed  Google Scholar 

  47. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pll.

    Article  CAS  Google Scholar 

  48. Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683): 525–528.

    Article  CAS  PubMed  Google Scholar 

  49. Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–951.

    Article  CAS  PubMed  Google Scholar 

  50. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wong KK, deLeeuw RJ, Dosanjh NS, et al. A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet. 2007;80(1):91–104.

    Article  CAS  PubMed  Google Scholar 

  52. Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460(7251):118–122.

    Article  CAS  PubMed  Google Scholar 

  53. Ma L, Lai D, Liu T, Cheng W, Guo L. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim Biophys Sin (Shanghai). 2010;42(9): 593–602.

    Article  CAS  Google Scholar 

  54. Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R. Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol. 2008;317(l):296–309.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang J, Chang DY, Mercado-Uribe I, Liu J. Sex-determining region Y-box 2 expression predicts poor prognosis in human ovarian carcinoma. Hum Pathol. 2012;43(9):1405–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ye F, Li Y, Hu Y, Zhou C, Hu Y, Chen H. Expression of Sox2 in human ovarian epithelial carcinoma. J Cancer Res Clin Oncol. 2011;137(1):131–137.

    Article  CAS  PubMed  Google Scholar 

  57. Peng S, Maihle NJ, Huang Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene. 2010;29(14):2153–2159.

    Article  CAS  PubMed  Google Scholar 

  58. Mak VC, Siu MK, Wong OG, Chan KK, Ngan HY, Cheung AN. Dysregulated sternness-related genes in gynecological malignancies. Histol Histopathol. 2012;27(9): 1121–1130.

    CAS  PubMed  Google Scholar 

  59. Liang D, Ma Y, Liu J, et al. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer. 2012;12:201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kregel S, Kiriluk KJ, Rosen AM, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One. 2013;8(l):e53701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990;346(6281):245–250.

    Article  CAS  PubMed  Google Scholar 

  62. Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000;227(2):239–255.

    Article  CAS  PubMed  Google Scholar 

  63. Pevny LH, Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dev. 1997;7(3):338–344.

    Article  CAS  PubMed  Google Scholar 

  64. Wegner M. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 1999;27(6):1409–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Soullier S, Jay P, Poulat F, Vanacker JM, Berta P, Laudet V. Diversification pattern of the HMG and SOX family members during evolution. J Mol Evol. 1999;48(5):517–527.

    Article  CAS  PubMed  Google Scholar 

  66. Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal andpluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med. 2009;l(2):228–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johansson H, Simonsson S.Core transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npml) to control embryonic stem (ES) cell fate determination. Aging (Albany NY). 2010;2(ll):815–822.

    Article  CAS  Google Scholar 

  68. Zhang X, Lu F, Wang J, et al. Pluripotent stem cell protein Sox2 confers sensitivity to LSD1 inhibition in cancer cells. Cell Rep. 2013;5(2):445–457.

    Article  CAS  PubMed  Google Scholar 

  69. Velcheti V, Schalper K, Yao X, et al. High SOX2 levels predict better outcome in non-small cell lung carcinomas. PLoS One. 2013;8(4):e61427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilbertz T, Wagner P, Petersen K, et al. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod Pathol. 2011; 24(7):944–953.

    Article  CAS  PubMed  Google Scholar 

  71. Abbas HA, Pant V, Lozano G. The ups and downs of p53 regulation in hematopoietic stem cells. Cell Cycle. 2011;10(19):3257–3262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol. 2005;7(2):165–171.

    Article  CAS  PubMed  Google Scholar 

  73. Xu Y. A new role for p53 in maintaining genetic stability in embryonic stem cells. Cell Cycle. 2005;4(3):363–364.

    Article  CAS  PubMed  Google Scholar 

  74. Boyd J, Sonoda Y, Federici MG, et al. Clinicopathologic features of BRCA-linked and sporadic ovarian cancer. JAMA. 2000; 283(17):2260–2265.

    Article  CAS  PubMed  Google Scholar 

  75. Garg K, Levine DA, Olvera N, et al. BRCA1 immunohistochem-istry in a molecularly characterized cohort of ovarian high-grade serous carcinomas. Am J Surg Pathol. 2013;37(1):138–146.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lacour RA, Westin SN, Meyer LA, et al. Improved survival in non-Ashkenazi Jewish ovarian cancer patients with BRCA1 and BRCA2 gene mutations. Gynecol Oncol. 2011;121(2): 358–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu J, Cristea MC, Frankel P, et al. Clinical characteristics and outcomes of BRCA-associated ovarian cancer: genotype and survival. Cancer Genet. 2012;205(l–2):34–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu G, Yang D, Sun Y, et al. Differing clinical impact of BRCA1 and BRCA2 mutations in serous ovarian cancer. Pharmacogenomics. 2012;13(13):1523–1535.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan M. Saed PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belotte, J., Fletcher, N.M., Alexis, M. et al. Sox2 Gene Amplification Significantly Impacts Overall Survival in Serous Epithelial Ovarian Cancer. Reprod. Sci. 22, 38–46 (2015). https://doi.org/10.1177/1933719114542021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114542021

Keywords

Navigation