1932

Abstract

The immune system defends against pathogens and maintains tissue homeostasis for the life of the organism. These diverse functions are bioenergetically expensive, requiring precise control of cellular metabolic pathways. Although initial observations in this area were made almost a century ago, studies over the past decade have elucidated the molecular basis for how extracellular signals control the uptake and catabolism of nutrients in quiescent and activated immune cells. Collectively, these studies have revealed that the metabolic pathways of oxidative metabolism, glycolysis, and glutaminolysis preferentially fuel the cell fate decisions and effector functions of immune cells. Here, we discuss these findings and provide a general framework for understanding how metabolism fuels and regulates the maturation of immune responses. A better understanding of the metabolic checkpoints that control these transitions might provide new insights for modulating immunity in infection, cancer, or inflammatory disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032713-120236
2014-03-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/32/1/annurev-immunol-032713-120236.html?itemId=/content/journals/10.1146/annurev-immunol-032713-120236&mimeType=html&fmt=ahah

Literature Cited

  1. Taniguchi C, Emanuelli B, Kahn C. 1.  2006. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7:85–96 [Google Scholar]
  2. Levene P, Meyer G. 2.  1912. The action of leucocytes on glucose. J. Biol. Chem. 12:265–73 [Google Scholar]
  3. Ardawi M, Newsholme E. 3.  1982. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat. Biochem. J. 208:743–48 [Google Scholar]
  4. Newsholme E, Crabtree B, Ardawi M. 4.  1985. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q. J. Exp. Physiol. 70:473–89 [Google Scholar]
  5. Wellen K, Hatzivassiliou G, Sachdeva U, Bui T, Cross J, Thompson C. 5.  2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–80 [Google Scholar]
  6. Fox C, Hammerman P, Thompson C. 6.  2005. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5:844–52 [Google Scholar]
  7. DeBerardinis R, Lum J, Hatzivassiliou G, Thompson C. 7.  2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20 [Google Scholar]
  8. Warburg O. 8.  1956. [Origin of cancer cells]. Oncologia 9:75–83 [Google Scholar]
  9. Vander Heiden M, Cantley L, Thompson C. 9.  2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33 [Google Scholar]
  10. Medzhitov R. 10.  2008. Origin and physiological roles of inflammation. Nature 454:428–35 [Google Scholar]
  11. Odegaard J, Chawla A. 11.  2013. The immune system as a sensor of the metabolic state. Immunity 38:644–54 [Google Scholar]
  12. Janeway C, Medzhitov R. 12.  2002. Innate immune recognition. Annu. Rev. Immunol. 20:197–216 [Google Scholar]
  13. Segal A. 13.  2005. How neutrophils kill microbes. Annu. Rev. Immunol. 23:197–223 [Google Scholar]
  14. Valentine W, Beck W. 14.  1951. Biochemical studies on leucocytes. I. Phosphatase activity in health, leucocytosis, and myelocytic leucemia. J. Lab. Clin. Med. 38:39–55 [Google Scholar]
  15. Sbarra A, Karnovsky M. 15.  1959. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 234:1355–62 [Google Scholar]
  16. van Raam B, Verhoeven A, Kuijpers T. 16.  2006. Mitochondria in neutrophil apoptosis. Int. J. Hematol. 84:199–204 [Google Scholar]
  17. Fossati G, Moulding D, Spiller D, Moots R, White M, Edwards S. 17.  2003. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J. Immunol. 170:1964–72 [Google Scholar]
  18. Borregaard N, Herlin T. 18.  1982. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Investig. 70:550–57 [Google Scholar]
  19. Weisdorf D, Craddock P, Jacob H. 19.  1982. Granulocytes utilize different energy sources for movement and phagocytosis. Inflammation 6:245–56 [Google Scholar]
  20. Boxer L, Baehner R, Davis J. 20.  1977. The effect of 2-deoxyglucose on guinea pig polymorphonuclear leukocyte phagocytosis. J. Cell. Physiol. 91:89–102 [Google Scholar]
  21. Furukawa S, Saito H, Inoue T, Matsuda T, Fukatsu K. 21.  et al. 2000. Supplemental glutamine augments phagocytosis and reactive oxygen intermediate production by neutrophils and monocytes from postoperative patients in vitro. Nutrition 16:323–29 [Google Scholar]
  22. Ogle C, Ogle J, Mao J, Simon J, Noel J. 22.  et al. 1994. Effect of glutamine on phagocytosis and bacterial killing by normal and pediatric burn patient neutrophils. J. Parenter. Enteral Nutr. 18:128–33 [Google Scholar]
  23. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y. 23.  et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–35 [Google Scholar]
  24. Kirchner T, Moller S, Klinger M, Solbach W, Laskay T, Behnen M. 24.  2012. The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediat. Inflamm. 2012:849136 [Google Scholar]
  25. Cramer T, Yamanishi Y, Clausen B, Forster I, Pawlinski R. 25.  et al. 2003. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112:645–57 [Google Scholar]
  26. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis E. 26.  et al. 2005. HIF-1α expression regulates the bactericidal capacity of phagocytes. J. Clin. Investig. 115:1806–15 [Google Scholar]
  27. Rowe S, Allen L, Ridger V, Hellewell P, Whyte M. 27.  2002. Caspase-1-deficient mice have delayed neutrophil apoptosis and a prolonged inflammatory response to lipopolysaccharide-induced acute lung injury. J. Immunol. 169:6401–7 [Google Scholar]
  28. McGrath E, Marriott H, Lawrie A, Francis S, Sabroe I. 28.  et al. 2011. TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. J. Leukoc. Biol. 90:855–65 [Google Scholar]
  29. Maianski N, Geissler J, Srinivasula S, Alnemri E, Roos D, Kuijpers T. 29.  2004. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ. 11:143–53 [Google Scholar]
  30. Kominsky D, Campbell E, Colgan S. 30.  2010. Metabolic shifts in immunity and inflammation. J. Immunol. 184:4062–68 [Google Scholar]
  31. Sher R, Wadee A, Joffe M. 31.  1983. The enhancement of eosinophil function by lymphocyte supernatants. Clin. Exp. Immunol. 51:525–34 [Google Scholar]
  32. Sumbayev V, Nicholas S, Streatfield C, Gibbs B. 32.  2009. Involvement of hypoxia-inducible factor-1 HiF(1α) in IgE-mediated primary human basophil responses. Eur. J. Immunol. 39:3511–19 [Google Scholar]
  33. Venge P, Moberg L, Bjornsson E, Bergstrom M, Langstrom B, Hakansson L. 33.  2003. Mechanisms of basal and cytokine-induced uptake of glucose in normal human eosinophils: relation to apoptosis. Respir. Med. 97:1109–19 [Google Scholar]
  34. Peachman K, Lyles D, Bass D. 34.  2001. Mitochondria in eosinophils: functional role in apoptosis but not respiration. Proc. Natl. Acad. Sci. USA 98:1717–22 [Google Scholar]
  35. Abraham SN, St John AL. 35.  2010. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10:440–52 [Google Scholar]
  36. Galli SJ, Tsai M, Piliponsky AM. 36.  2008. The development of allergic inflammation. Nature 454:445–54 [Google Scholar]
  37. Johansen T. 37.  1979. Adenosine triphosphate levels during anaphylactic histamine release in rat mast cells in vitro. Effects of glycolytic and respiratory inhibitors. Eur. J. Pharmacol. 58:107–15 [Google Scholar]
  38. Johansen T. 38.  1983. Utilization of adenosine triphosphate in rat mast cells during and after secretion of histamine in response to compound 48/80. Acta Pharmacol. Toxicol. 53:245–49 [Google Scholar]
  39. Chakravarty N. 39.  1962. Inhibition of anaphylactic histamine release by 2-deoxyglucose. Nature 194:1182–84 [Google Scholar]
  40. Chakravarty N, Sorensen H. 40.  1974. Stimulation of glucose metabolism in rat mast cells by antigen, dextran and compound 48/80, used as histamine releasing agents. Acta Physiol. Scand. 91:339–53 [Google Scholar]
  41. Wynn T, Chawla A, Pollard J. 41.  2013. Macrophage biology in development, homeostasis and disease. Nature 496:445–55 [Google Scholar]
  42. Yona S, Kim K-W, Wolf Y, Mildner A, Varol D. 42.  et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91 [Google Scholar]
  43. Hashimoto D, Chow A, Noizat C, Teo P, Beasley M. 43.  et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804 [Google Scholar]
  44. Jenkins S, Ruckerl D, Cook P, Jones L, Finkelman F. 44.  et al. 2011. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–88 [Google Scholar]
  45. Geissmann F, Manz M, Jung S, Sieweke M, Merad M, Ley K. 45.  2010. Development of monocytes, macrophages, and dendritic cells. Science 327:656–61 [Google Scholar]
  46. Gordon S. 46.  2003. Alternative activation of macrophages. Nat. Rev. Immunol. 3:23–35 [Google Scholar]
  47. Murray P, Wynn T. 47.  2011. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11:723–37 [Google Scholar]
  48. Odegaard J, Chawla A. 48.  2011. Alternative macrophage activation and metabolism. Annu. Rev. Pathol. Mech. Dis. 6:275–97 [Google Scholar]
  49. Kempner W. 49.  1939. The nature of leukemic blood cells as determined by their metabolism. J. Clin. Investig. 18:291–300 [Google Scholar]
  50. Newsholme P, Curi R, Gordon S, Newsholme E. 50.  1986. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem. J. 239:121–25 [Google Scholar]
  51. Newsholme P, Newsholme E. 51.  1989. Rates of utilization of glucose, glutamine and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochem. J. 261:211–18 [Google Scholar]
  52. Oren R, Farnham A, Saito K, Milofsky E, Karnovsky M. 52.  1963. Metabolic patterns in three types of phagocytizing cells. J. Cell Biol. 17:487–501 [Google Scholar]
  53. Newsholme P, Gordon S, Newsholme EA. 53.  1987. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketones bodies by mouse macrophages. Biochem. J. 242:631–36 [Google Scholar]
  54. Barghouthi S, Everett K, Speert D. 54.  1995. Nonopsonic phagocytosis of Pseudomonas aeruginosa requires facilitated transport of D-glucose by macrophages. J. Immunol. 154:3420–28 [Google Scholar]
  55. Wallace C, Keast D. 55.  1992. Glutamine and macrophage function. Metab. Clin. Exp. 41:1016–20 [Google Scholar]
  56. Michl J, Ohlbaum D, Silverstein S. 56.  1976. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages. II. Dissociation of the inhibitory effects of 2-deoxyglucose on phagocytosis and ATP generation. J. Exp. Med. 144:1484–93 [Google Scholar]
  57. Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel A, Johnson R, Nizet V. 57.  2007. Cutting edge: essential role of hypoxia inducible factor-1α in development of lipopolysaccharide-induced sepsis. J. Immunol. 178:7516–19 [Google Scholar]
  58. Sonoda J, Laganiere J, Mehl I, Barish G, Chong L-W. 58.  et al. 2007. Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes Dev. 21:1909–20 [Google Scholar]
  59. West A, Brodsky I, Rahner C, Woo D, Erdjument-Bromage H. 59.  et al. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–80 [Google Scholar]
  60. Arnoult D, Carneiro L, Tattoli I, Girardin S. 60.  2009. The role of mitochondria in cellular defense against microbial infection. Semin. Immunol. 21:223–32 [Google Scholar]
  61. Zhou R, Yazdi A, Menu P, Tschopp J. 61.  2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–25 [Google Scholar]
  62. Nakahira K, Haspel J, Rathinam V, Lee S-J, Dolinay T. 62.  et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:222–30 [Google Scholar]
  63. Tannahill G, Curtis A, Adamik J, Palsson-McDermott E, McGettrick A. 63.  et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–42 [Google Scholar]
  64. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL. 64.  et al. 2006. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4:13–24 [Google Scholar]
  65. Picard M, Hepple RT, Burelle Y. 65.  2012. Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function. Am. J. Physiol. Cell Physiol. 302:C629–41 [Google Scholar]
  66. Mason S, Howlett R, Kim M, Olfert I, Hogan M. 66.  et al. 2004. Loss of skeletal muscle HIF-1α results in altered exercise endurance. PLoS Biol. 2:e288 [Google Scholar]
  67. Narkar V, Downes M, Yu R, Embler E, Wang Y-X. 67.  et al. 2008. AMPK and PPARδ agonists are exercise mimetics. Cell 134:405–15 [Google Scholar]
  68. Lin J, Wu H, Tarr P, Zhang C-Y, Wu Z. 68.  et al. 2002. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801 [Google Scholar]
  69. Wang Y-X, Zhang C-L, Yu R, Cho H, Nelson M. 69.  et al. 2004. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2:e294 [Google Scholar]
  70. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V. 70.  et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116–20 [Google Scholar]
  71. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR. 71.  et al. 2008. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7:496–507 [Google Scholar]
  72. Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K. 72.  et al. 2008. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7:485–95 [Google Scholar]
  73. Rodriguez-Prados J-C, Traves P, Cuenca J, Rico D, Aragones J. 73.  et al. 2010. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185:605–14 [Google Scholar]
  74. Haschemi A, Kosma P, Gille L, Evans C, Burant C. 74.  et al. 2012. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15:813–26 [Google Scholar]
  75. Lee H, Iwasaki A. 75.  2007. Innate control of adaptive immunity: dendritic cells and beyond. Semin. Immunol. 19:48–55 [Google Scholar]
  76. Miller J, Brown B, Shay T, Gautier E, Jojic V. 76.  et al. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13:888–99 [Google Scholar]
  77. Jantsch J, Chakravortty D, Turza N, Prechtel A, Buchholz B. 77.  et al. 2008. Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function. J. Immunol. 180:4697–705 [Google Scholar]
  78. Krawczyk C, Holowka T, Sun J, Blagih J, Amiel E. 78.  et al. 2011. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742–49 [Google Scholar]
  79. Everts B, Amiel E, Van der Windt G, Freitas T, Chott R. 79.  et al. 2012. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120:1422–31 [Google Scholar]
  80. MacIver N, Michalek R, Rathmell J. 80.  2013. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31:259–83 [Google Scholar]
  81. Rathmell J, Vander Heiden M, Harris M, Frauwirth K, Thompson C. 81.  2000. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6:683–92 [Google Scholar]
  82. Rathmell J, Farkash E, Gao W, Thompson C. 82.  2001. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167:6869–76 [Google Scholar]
  83. Jacobs S, Michalek R, Rathmell J. 83.  2010. IL-7 is essential for homeostatic control of T cell metabolism in vivo. J. Immunol. 184:3461–69 [Google Scholar]
  84. Wofford J, Wieman H, Jacobs S, Zhao Y, Rathmell J. 84.  2008. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111:2101–11 [Google Scholar]
  85. Barata J, Silva A, Brandao J, Nadler L, Cardoso A, Boussiotis V. 85.  2004. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J. Exp. Med. 200:659–69 [Google Scholar]
  86. Parenti F, Franceschini P, Forti G, Cepellini R. 86.  1966. The effect of phytohaemagglutinin on the metabolism and gamma-globulin synthesis of human lymphocytes. Biochim. Biophys. Acta 123:181–87 [Google Scholar]
  87. Polgar P, Foster J, Cooperband S. 87.  1968. Glycolysis as an energy source for stimulation of lymphocytes by phytohemagglutinin. Exp. Cell Res. 49:231–37 [Google Scholar]
  88. Roos D, Loos J. 88.  1973. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp. Cell Res. 77:127–35 [Google Scholar]
  89. Roos D, Loos J. 89.  1970. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. I. Stimulation by phytohaemagglutinin. Biochim. Biophys. Acta 222:565–82 [Google Scholar]
  90. Hume D, Radik J, Ferber E, Weidemann M. 90.  1978. Aerobic glycolysis and lymphocyte transformation. Biochem. J. 174:703–9 [Google Scholar]
  91. Frauwirth K, Riley J, Harris M, Parry R, Rathmell J. 91.  et al. 2002. The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–77 [Google Scholar]
  92. Rathmell J, Elstrom R, Cinalli R, Thompson C. 92.  2003. Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur. J. Immunol. 33:2223–32 [Google Scholar]
  93. Wieman H, Wofford J, Rathmell J. 93.  2007. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell 18:1437–46 [Google Scholar]
  94. Parry R, Chemnitz J, Frauwirth K, Lanfranco A, Braunstein I. 94.  et al. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25:9543–53 [Google Scholar]
  95. Francisco L, Salinas V, Brown K, Vanguri V, Freeman G. 95.  et al. 2009. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206:3015–29 [Google Scholar]
  96. Carr E, Kelman A, Wu G, Gopaul R, Senkevitch E. 96.  et al. 2010. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185:1037–44 [Google Scholar]
  97. Wang R, Dillon C, Shi L, Milasta S, Carter R. 97.  et al. 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–82 [Google Scholar]
  98. Chang C-H, Curtis J, Maggi L, Faubert B, Villarino A. 98.  et al. 2013. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–51 [Google Scholar]
  99. Ardawi M. 99.  1988. Glutamine and glucose metabolism in human peripheral lymphocytes. Metab. Clin. Exp. 37:99–103 [Google Scholar]
  100. Nagy E, Rigby W. 100.  1995. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD+-binding region (Rossmann fold). J. Biol. Chem. 270:2755–63 [Google Scholar]
  101. Holden H, Rayment I, Thoden J. 101.  2003. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. 278:43885–88 [Google Scholar]
  102. Sena L, Li S, Jairaman A, Prakriya M, Ezponda T. 102.  et al. 2013. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38:225–36 [Google Scholar]
  103. Zhu J, Yamane H, Paul WE. 103.  2010. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89 [Google Scholar]
  104. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL. 104.  et al. 2009. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:6832–44 [Google Scholar]
  105. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ. 105.  et al. 2011. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186:63299–303 [Google Scholar]
  106. Kopf H, de la Rosa GM, Howard OM, Chen X. 106.  2007. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int. Immunopharmacol. 7:131819–24 [Google Scholar]
  107. Battaglia M, Stabilini A, Roncarolo M-G. 107.  2005. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105:124743–48 [Google Scholar]
  108. Valmori D, Tosello V, Souleimanian NE, Godefroy E, Scotto L. 108.  et al. 2006. Rapamycin-mediated enrichment of T cells with regulatory activity in stimulated CD4+ T cell cultures is not due to the selective expansion of naturally occurring regulatory T cells but to the induction of regulatory functions in conventional CD4+ T cells. J. Immunol. 177:2944–49 [Google Scholar]
  109. Kang J, Huddleston SJ, Fraser JM, Khoruts A. 109.  2008. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J. Leukoc. Biol. 83:51230–39 [Google Scholar]
  110. Laplante M, Sabatini DM. 110.  2012. mTOR signaling in growth control and disease. Cell 149:2274–93 [Google Scholar]
  111. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ. 111.  et al. 2011. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12:4295–303 [Google Scholar]
  112. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S. 112.  et al. 2010. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32:6743–53 [Google Scholar]
  113. Yang K, Shrestha S, Zeng H, Karmaus PW, Neale G. 113.  et al. 2013. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity 39:61043–56 [Google Scholar]
  114. Shi LZ, Wang R, Huang G, Vogel P, Neale G. 114.  et al. 2011. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208:71367–76 [Google Scholar]
  115. Pearce E, Walsh M, Cejas P, Harms G, Shen H. 115.  et al. 2009. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–7 [Google Scholar]
  116. Van der Windt G, Everts B, Chang C-H, Curtis J, Freitas T. 116.  et al. 2012. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36:68–78 [Google Scholar]
  117. Araki K, Turner A, Shaffer V, Gangappa S, Keller S. 117.  et al. 2009. mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–12 [Google Scholar]
  118. Rao R, Li Q, Odunsi K, Shrikant P. 118.  2010. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32:67–78 [Google Scholar]
  119. Doughty C, Bleiman B, Wagner D, Dufort F, Mataraza J. 119.  et al. 2006. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107:4458–65 [Google Scholar]
  120. Dufort F, Bleiman B, Gumina M, Blair D, Wagner D. 120.  et al. 2007. Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J. Immunol. 179:4953–57 [Google Scholar]
  121. Limon J, Fruman D. 121.  2012. Akt and mTOR in B cell activation and differentiation. Front. Immunol. 3:228 [Google Scholar]
  122. Cheng L, Ding G, Qin Q, Huang Y, Lewis W. 122.  et al. 2004. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat. Med. 10:1245–50 [Google Scholar]
  123. Gan B, Hu J, Jiang S, Liu Y, Sahin E. 123.  et al. 2010. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468:701–4 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032713-120236
Loading
/content/journals/10.1146/annurev-immunol-032713-120236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error