Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Micronodular transformation as a novel mechanism of VEGF-A-induced metastasis

Abstract

How and why tumors metastasize is still a matter of debate. The assumption is that mutations render tumor cells with a metastatic phenotype, enabling entrance in and transport through lymph or blood vessels. Distant outgrowth is thought to occur only in a suitable microenvironment (the seed and soil hypothesis). However, the anatomical location of most metastases in cancer patients suggests entrapment of tumor cells in the first microcapillary bed that is encountered. We here investigated how vascular endothelial growth factor-A (VEGF-A) attributes to the metastatic process. We describe here that VEGF-A enhances spontaneous metastasis by inducing intravasation of heterogeneous tumor cell clusters, surrounded by vessel wall elements, via an invasion-independent mechanism. These tumor clusters generate metastatic tissue embolisms in pulmonary arteries. Treatment of tumor-bearing mice with the antiangiogenic compound ZD6474 prevented the development of this metastatic phenotype. This work shows that tumors with high constitutive VEGF-A expression metastasize via the formation of tumor emboli and provides an alternative rationale for anti-VEGF-A therapy, namely to inhibit metastasis formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3
Figure 5

Similar content being viewed by others

References

  • Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ . (2000). Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6: 100–102.

    Article  CAS  PubMed  Google Scholar 

  • Alpaugh ML, Tomlinson JS, Kasraeian S, Barsky SH . (2002). Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast carcinoma. Oncogene 21: 3631–3643.

    Article  CAS  PubMed  Google Scholar 

  • Auguste P, Lemiere S, Larrieu-Lahargue F, Bikfalvi A . (2005). Molecular mechanisms of tumor vascularization. Crit Rev Oncol Hematol 54: 53–61.

    Article  PubMed  Google Scholar 

  • Ellis LM, Fidler IJ . (1996). Angiogenesis and metastasis. Eur J Cancer 32A: 2451–2460.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N . (2002). VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2: 795–803.

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ, Talmadge JE . (1986). Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res 46: 5167–5171.

    CAS  PubMed  Google Scholar 

  • Fidler IJ, Schackert G, Zhang RD, Radinsky R, Fujimaki T . (1999). The biology of melanoma brain metastasis. Cancer Metastasis Rev 18: 387–400.

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ . (1973). The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9: 223–227.

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ . (1996). Critical determinants of melanoma metastasis. J Investig Dermatol Symp Proc 1: 203–208.

    CAS  PubMed  Google Scholar 

  • Fidler IJ . (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J . (1990). What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6.

    Article  CAS  PubMed  Google Scholar 

  • Gannon G, Mandriota SJ, Cui L, Baetens D, Pepper MS, Christofori G . (2002). Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res 62: 603–608.

    CAS  PubMed  Google Scholar 

  • Glaves D . (1983). Correlation between circulating cancer cells and incidence of metastases. Br J Cancer 48: 665–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan J, Byers R, Jayson GC . (2002). Intra-tumoural microvessel density in human solid tumours. Br J Cancer 86: 1566–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanayama H, Yano S, Kim SJ, Ozawa S, Ellis LM, Fidler IJ . (1999). Expression of vascular endothelial growth factor by human renal cancer cells enhances angiogenesis of primary tumors and production of ascites but not metastasis to the lungs in nude mice. Clin Exp Metastasis 17: 831–840.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killion JJ, Radinsky R, Fidler IJ . (1998). Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 17: 279–284.

    Article  PubMed  Google Scholar 

  • Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS et al. (2002). Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci USA 12: 12.

    Google Scholar 

  • Kusters B, de Waal RM, Wesseling P, Verrijp K, Maass C, Heerschap A et al. (2003). Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma. Cancer Res 63: 5408–5413.

    PubMed  Google Scholar 

  • Kusters B, Leenders WP, Wesseling P, Smits D, Verrijp K, Ruiter DJ et al. (2002). Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62: 341–345.

    CAS  PubMed  Google Scholar 

  • Kusters B, Westphal JR, Smits D, Ruiter DJ, Wesseling P, Keilholz U et al. (2001). The pattern of metastasis of human melanoma to the central nervous system is not influenced by integrin alpha(v)beta(3) expression. Int J Cancer 92: 176–180.

    Article  CAS  PubMed  Google Scholar 

  • Leenders W, Kusters B, De Waal R . (2002). Vessel co-option: How tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9: 83–87.

    Article  PubMed  Google Scholar 

  • Leenders WP, Kusters B, Verrijp K, Maass C, Wesseling P, Heerschap A et al. (2004). Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10: 6222–6230.

    Article  CAS  PubMed  Google Scholar 

  • Liotta LA, Saidel MG, Kleinerman J . (1976). The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 36: 889–894.

    CAS  PubMed  Google Scholar 

  • Moffett BF, Baban D, Bao L, Tarin D . (1992). Fate of clonal lineages during neoplasia and metastasis studied with an incorporated genetic marker. Cancer Res 52: 1737–1743.

    CAS  PubMed  Google Scholar 

  • Neves S, Mazal PR, Wanschitz J, Rudnay AC, Drlicek M, Czech T et al. (2001). Pseudogliomatous growth pattern of anaplastic small cell carcinomas metastatic to the brain. Clin Neuropathol 20: 38–42.

    CAS  PubMed  Google Scholar 

  • Passalidou E, Trivella M, Singh N, Ferguson M, Hu J, Cesario A et al. (2002). Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas. Br J Cancer 86: 244–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G et al. (1997). Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 151: 1417–1423.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pezzella F . (2000). Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Breast cancer progression working party. Lancet 355: 1787–1788.

    Article  Google Scholar 

  • Ruiter DJ, van Krieken JH, van Muijen GN, de Waal RM . (2001). Tumour metastasis: is tissue an issue? Lancet Oncol 2: 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Span PN, Grebenchtchikov N, Geurts-Moespot J, Westphal JR, Lucassen AM, Sweep CG . (2000). EORTC Receptor and Biomarker Study Group Report: a sandwich enzyme-linked immunosorbent assay for vascular endothelial growth factor in blood and tumor tissue extracts. Int J Biol Markers 15: 184–191.

    Article  CAS  PubMed  Google Scholar 

  • Sugino T, Kawaguchi T, Suzuki T . (1993). Sequential process of blood-borne lung metastases of spontaneous mammary carcinoma in C3H mice. Int J Cancer 55: 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T, Goodison S et al. (2002). An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am J Pathol 160: 1973–1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugino T, Yamaguchi T, Ogura G, Saito A, Hashimoto T, Hoshi N et al. (2004). Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers. BMC Med 2: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomlinson JS, Alpaugh ML, Barsky SH . (2001). An intact overexpressed E-cadherin/alpha,beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res 61: 5231–5241.

    CAS  PubMed  Google Scholar 

  • Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E et al. (2001). Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 195: 336–342.

    Article  CAS  PubMed  Google Scholar 

  • Vlems FA, Ruers TJ, Punt CJ, Wobbes T, van Muijen GN . (2003). Relevance of disseminated tumour cells in blood and bone marrow of patients with solid epithelial tumours in perspective. Eur J Surg Oncol 29: 289–302.

    Article  CAS  PubMed  Google Scholar 

  • Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA et al. (2002). ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62: 4645–4655.

    CAS  PubMed  Google Scholar 

  • Weidner N, Folkman J . (1996). Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncol, 167–190.

  • Weidner N . (1998). Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol 184: 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Weidner N . (2002). New paradigm for vessel intravasation by tumor cells. Am J Pathol 160: 1937–1939.

    Article  PubMed  PubMed Central  Google Scholar 

  • Westphal JR, Van’t Hullenaar R, Peek R, Willems RW, Crickard K, Crickard U et al. (2000). Angiogenic balance in human melanoma: expression of VEGF, bFGF, IL-8, PDGF and angiostatin in relation to vascular density of xenografts in vivo. Int J Cancer 86: 768–776.

    Article  CAS  PubMed  Google Scholar 

  • Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM et al. (2000). Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 60: 4959–4967.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Debby Smits, Ilona van den Brink and Geert Poelen for excellent technical assistance with the animal experiments. This study was supported by the Dutch Cancer Society (Grant KUN 2000-2302 (WL) and KUN 2001-2399 (BK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W P J Leenders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küsters, B., Kats, G., Roodink, I. et al. Micronodular transformation as a novel mechanism of VEGF-A-induced metastasis. Oncogene 26, 5808–5815 (2007). https://doi.org/10.1038/sj.onc.1210360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210360

Keywords

This article is cited by

Search

Quick links