Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

The cholesterol lowering drug lovastatin induces cell death in myeloma plasma cells

Abstract

Lovastatin is an irreversible inhibitor of HMG-CoA reductase and blocks the production of mevalonate, a critical compound in the production of cholesterol and isoprenoids. Isoprenylation of target proteins, like the GTP-binding protein Ras, is essential for their membrane localization and subsequent participation in intracellular signaling cascades. Lovastatin effectively decreased the viability of plasma cells from cell lines (n = 10) and myeloma patients’ samples (n = 8) in a dose- and time-dependent way. Importantly, co-incubation of lovastatin with dexamethasone had a synergistic effect in inducing plasma cell cytotoxity. This effect was not the consequence of a change in the protein expression levels of Bcl-2 or Bax induced by lovastatin. The decrease in plasma cell viability was the result of induction of apoptosis and inhibition of proliferation. Mevalonate effectively reversed the cytotoxic and cytostatic effects of lovastatin in plasma cells. The cytotoxic activity of lovastatin was higher in Pgp expressing cell lines, but did not correlate with the multidrug resistance (MDR)-related proteins LRP, Bcl-2 and Bax. Lovastatin treatment resulted in a shift of Ras localization from the membrane to the cytosol that was reversed by mevalonate. The data presented in this paper warrant study of lovastatin alone or in combination with therapeutic drugs, in the treatment of myeloma patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goldstein JL, Brown MS . Regulation of the mevalonate pathway Nature 1990 343: 425–430

    Article  CAS  Google Scholar 

  2. Magee T, Marshall C . New insights into the interaction of Ras with the plasma membrane Cell 1999 98: 9–12

    Article  CAS  Google Scholar 

  3. Kato K, Cox AD, Hisaka MM, Graham SM, Buss JE, Der CJ . Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity Proc Natl Acad Sci USA 1992 89: 6403–6407

    Article  CAS  Google Scholar 

  4. Gelb MH . Protein prenylation, et cetera: signal transduction in two dimensions Science 1997 275: 1750–1751

    Article  CAS  Google Scholar 

  5. Rebollo A, Martinez A . Ras proteins: recent advances and new functions Blood 1999 94: 2971–2980

    CAS  PubMed  Google Scholar 

  6. Reuter CW, Morgan MA, Bergmann L . Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 2000 96: 1655–1669

    CAS  PubMed  Google Scholar 

  7. O'Gorman DM, Cotter TG . Molecular signals in anti-apoptotic survival pathways Leukemia 2001 15: 21–34

    Article  CAS  Google Scholar 

  8. Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, Langendorfer A, Stein EA, Kruyer W, Gotto AM . Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study JAMA 1998 279: 1615–1622

    Article  CAS  Google Scholar 

  9. Cuthbert JA, Lipsky PE . Regulation of proliferation and Ras localization in transformed cells by products of mevalonate metabolism Cancer Res 1997 57: 3498–3505

    CAS  Google Scholar 

  10. Ghosh PM, Ghosh-Choudhury N, Moyer ML, Mott GE, Thomas CA, Foster BA, Greenberg NM, Kreisberg JI . Role of RhoA activation in the growth and morphology of a murine prostate tumor cell line Oncogene 1999 18: 4120–4130

    Article  CAS  Google Scholar 

  11. Jakobisiak M, Bruno S, Skierski JS, Darzynkiewicz Z . Cell cycle-specific effects of lovastatin Proc Natl Acad Sci USA 1991 88: 3628–3632

    Article  CAS  Google Scholar 

  12. Soma MR, Pagliarini P, Butti G, Paoletti R, Paoletti P, Fumagalli R . Simvastatin, an inhibitor of cholesterol biosynthesis, shows a synergistic effect with N,N′-bis(2-chloroethyl)-N-nitrosourea and beta-interferon on human glioma cells Cancer Res 1992 52: 4348–4355

    CAS  PubMed  Google Scholar 

  13. Soma MR, Baetta R, De Renzis MR, Mazzini G, Davegna C, Magrassi L, Butti G, Pezzotta S, Paoletti R, Fumagalli R . In vivo enhanced antitumor activity of carmustine [N,N′-bis(2-chloroethyl)-N-nitrosourea] by simvastatin Cancer Res 1995 55: 597–602

    CAS  PubMed  Google Scholar 

  14. Feleszko W, Zagozdzon R, Golab J, Jakobisiak M . Potentiated antitumour effects of cisplatin and lovastatin against MmB16 melanoma in mice Eur J Cancer 1998 34: 406–411

    Article  CAS  Google Scholar 

  15. Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR . Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells Clin Cancer Res 1999 5: 2223–2229

    CAS  PubMed  Google Scholar 

  16. Feleszko W, Balkowiec EZ, Sieberth E, Marczak M, Dabrowska A, Giermasz A, Czajka A, Jakobisiak M . Lovastatin and tumor necrosis factor-alpha exhibit potentiated antitumor effects against Ha-ras-transformed murine tumor via inhibition of tumor-induced angiogenesis Int J Cancer 1999 81: 560–567

    Article  CAS  Google Scholar 

  17. Agarwal B, Rao CV, Bhendwal S, Ramey WR, Shirin H, Reddy BS, Holt PR . Lovastatin augments sulindac-induced apoptosis in colon cancer cells and potentiates chemopreventive effects of sulindac Gastroenterology 1999 117: 838–847

    Article  CAS  Google Scholar 

  18. Feleszko W, Mlynarczuk I, Balkowiec-Iskra EZ, Czajka A, Switaj T, Stoklosa T, Giermasz A, Jakobisiak M . Lovastatin potentiates antitumor activity and attenuates cardiotoxicity of doxorubicin in three tumor models in mice Clin Cancer Res 2000 6: 2044–2052

    CAS  PubMed  Google Scholar 

  19. Dimitroulakos J, Nohynek D, Backway KL, Hedley DW, Yeger H, Freedman MH, Minden MD, Penn LZ . Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach Blood 1999 93: 1308–1318

    CAS  PubMed  Google Scholar 

  20. Bouterfa HL, Sattelmeyer V, Czub S, Vordermark D, Roosen K, Tonn JC . Inhibition of Ras farnesylation by lovastatin leads to downregulation of proliferation and migration in primary cultured human glioblastoma cells Anticancer Res 2000 20: 2761–2771

    CAS  PubMed  Google Scholar 

  21. Pedersen TR, Wilhelmsen L, Faergeman O, Strandberg TE, Thorgeirsson G, Troson L eds Kristianson J, Berg K, Cook TJ, Haghfelt T, Kjekshus J, Miettinen T, Olsson AG, Pyorala K, Wedel H . Follow-up study of patients randomized in the Scandinavian simvastatin survival study (4S) of cholesterol lowering Am J Cardiol 2000 86: 257–262

    Article  CAS  Google Scholar 

  22. Klein B, Zhang XG, Lu ZY, Bataille R . Interleukin-6 in human multiple myeloma Blood 1995 85: 863–872

    CAS  PubMed  Google Scholar 

  23. Ogata A, Chauhan D, Teoh G, Teoh G, Treon SP, Urashima M, Schlossman RL, Anderson KC . IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade J Immunol 1997 159: 2212–2221

    CAS  PubMed  Google Scholar 

  24. Hallek M, Bergsagel PL, Anderson KC . Multiple myeloma: increasing evidence for a multistep transformation process Blood 1998 91: 3–21

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirano T, Ishihara K, Hibi M . Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors Oncogene 2000 19: 2548–2556

    Article  CAS  Google Scholar 

  26. Billadeau D, Liu P, Jelinek D, Shah N, LeBien TW, Van Ness B . Activating mutations in the N- and K-ras oncogenes differentially affect the growth properties of the IL-6-dependent myeloma cell line ANBL6 Cancer Res 1997 57: 2268–2275

    CAS  PubMed  Google Scholar 

  27. Rowley M, Liu P, Van Ness B . Heterogeneity in therapeutic response of genetically altered myeloma cell lines to interleukin 6, dexamethasone, doxorubicin, and melphalan Blood 2000 96: 3175–3180

    CAS  PubMed  Google Scholar 

  28. Bassa BV, Roh DD, Vaziri ND, Kirschenbaum MA, Kamanna VS . Effect of inhibition of cholesterol synthetic pathway on the activation of Ras and MAP kinase in mesangial cells Biochim Biophys Acta 1999 1449: 137–149

    Article  CAS  Google Scholar 

  29. Keyomarsi K, Sandoval L, Band V, Pardee AB . Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin Cancer Res 1991 51: 3602–3609

    CAS  PubMed  Google Scholar 

  30. Bloem AC, Lamme T, de Smet M, Kok H, Vooijs W, Wijdenes J, Boom SE, Lokhorst HM . Long-term bone marrow cultured stromal cells regulate myeloma tumour growth in vitro: studies with primary tumour cells and LTBMC-dependent cell lines Br J Haematol 1998 100: 166–175

    Article  CAS  Google Scholar 

  31. Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, Jourdan M, Boiron JM, Bataille R, Klein B . Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma Blood 1994 83: 3654–3663

    CAS  PubMed  Google Scholar 

  32. Jego G, Robillard N, Puthier D, Amiot M, Accard F, Pineau D, Harousseau JL, Bataille R, Pellat-Deceunynck C . Reactive plasmacytoses are expansions of plasmablasts retaining the capacity to differentiate into plasma cells Blood 1999 94: 701–712

    CAS  PubMed  Google Scholar 

  33. Roovers DJ, van Vliet M, Bloem AC, Lokhorst HM . Idarubicin overcomes P-glycoprotein-related multidrug resistance: comparison with doxorubicin and daunorubicin in human multiple myeloma cell lines Leuk Res 1999 23: 539–548

    Article  CAS  Google Scholar 

  34. Daha MR, Bloem AC, Ballieux RE . Immunoglobulin production by human peripheral lymphocytes induced by anti-C3 receptor antibodies J Immunol 1984 132: 1197–1201

    CAS  PubMed  Google Scholar 

  35. van Horssen M, Loman S, Rijkers GT, Boom SE, Bloem AC . Co-ligation of ICAM-1 (CD54) and membrane IgM negatively affects B cell receptor signaling Eur J Immunol 1995 25: 154–158

    Article  CAS  Google Scholar 

  36. Gazitt Y, Fey V, Thomas C, Alvarez R . Bcl-2 overexpression is associated with resistance to dexamethasone, but not melphalan, in multiple myeloma cells Int J Oncol 1998 13: 397–405

    CAS  PubMed  Google Scholar 

  37. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ, Trepel J, Liang B, Patronas N, Venzon DJ, Reed E, Myers CE . Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer Clin Cancer Res 1996 2: 483–491

    CAS  PubMed  Google Scholar 

  38. Dalton WS, Jove R . Drug resistance in multiple myeloma: approaches to circumvention Semin Oncol 1999 26(5 Suppl. 13): 23–27

    Google Scholar 

  39. Epstein J, Xiao HQ, Oba BK . P-glycoprotein expression in plasma-cell myeloma is associated with resistance to VAD Blood 1989 74: 913–917

    CAS  PubMed  Google Scholar 

  40. Sonneveld P, Durie BG, Lokhorst HM, Marie JP, Solbu G, Suciu S, Zittoun R, Lowenberg B, Nooter K . Modulation of multidrug-resistant multiple myeloma by cyclosporin. The Leukaemia Group of the EORTC and the HOVON Lancet 1992 340: 255–259

    Article  CAS  Google Scholar 

  41. Grogan TM, Spier CM, Salmon SE, Matzner M, Rybski J, Weinstein RS, Scheper RJ, Dalton WS . P-glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy Blood 1993 81: 490–495

    CAS  PubMed  Google Scholar 

  42. Raaijmakers HG, Izquierdo MA, Lokhorst HM, de Leeuw C, Belien JA, Bloem AC, Dekker AW, Scheper RJ, Sonneveld P . Lung-resistance-related protein expression is a negative predictive factor for response to conventional low but not to intensified dose alkylating chemotherapy in multiple myeloma Blood 1998 91: 1029–1036

    CAS  Google Scholar 

  43. Filipits M, Drach J, Pohl G, Schuster J, Stranzl T, Ackermann J, Konigsberg R, Kaufmann H, Gisslinger H, Huber H, Ludwig H, Pirker R . Expression of the lung resistance protein predicts poor outcome in patients with multiple myeloma Clin Cancer Res 1999 5: 2426–2430

    CAS  PubMed  Google Scholar 

  44. Schwarze MM, Hawley RG . Prevention of myeloma cell apoptosis by ectopic bcl-2 expression or interleukin 6-mediated up-regulation of bcl-xL Cancer Res 1995 55: 2262–2265

    CAS  Google Scholar 

  45. Renner S, Weisz J, Krajewski S, Krajewska M, Reed JC, Lichtenstein A . Expression of BAX in plasma cell dyscrasias Clin Cancer Res 2000 6: 2371–2380

    CAS  PubMed  Google Scholar 

  46. Holmberg M, Sandberg C, Nygren P, Larsson R . Effects of lovastatin on a human myeloma cell line: increased sensitivity of a multidrug-resistant subline that expresses the 170 kDa P-glycoprotein Anticancer Drugs 1994 5: 598–600

    Article  CAS  Google Scholar 

  47. Dimitroulakos J, Yeger H . HMG-CoA reductase mediates the biological effects of retinoic acid on human neuroblastoma cells: lovastatin specifically targets P-glycoprotein-expressing cells Nat Med 1996 2: 326–333

    Article  CAS  Google Scholar 

  48. Maksumova L, Ohnishi K, Muratkhodjaev F, Zhang W, Pan L, Takeshita A, Ohno R . Increased sensitivity of multidrug-resistant myeloid leukemia cell lines to lovastatin Leukemia 2000 14: 1444–1450

    Article  CAS  Google Scholar 

  49. Nakafuku M, Satoh T, Kaziro Y . Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce an accumulation of an active Ras.GTP complex in rat pheochromocytoma PC12 cells J Biol Chem 1992 267: 19448–19454

    CAS  PubMed  Google Scholar 

  50. Liu P, Leong T, Quam L, Billadeau D, Kay NE, Greipp P, Kyle RA, Oken MM, Van Ness B . Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial Blood 1996 88: 2699–2706

    CAS  PubMed  Google Scholar 

  51. Neri A, Murphy JP, Cro L, Ferrero D, Tarella C, Baldini L, Dalla-Favera R . Ras oncogene mutation in multiple myeloma J Exp Med 1989 170: 1715–1725

    Article  CAS  Google Scholar 

  52. Portier M, Moles JP, Mazars GR, Jeanteur P, Bataille R, Klein B, Theillet C . p53 and RAS gene mutations in multiple myeloma Oncogene 1992 7: 2539–2543

    CAS  PubMed  Google Scholar 

  53. Muller C, Bockhorn AG, Klusmeier S, Kiehl M, Roeder C, Kalthoff H, Koch OM . Lovastatin inhibits proliferation of pancreatic cancer cell lines with mutant as well as with wild-type K-ras oncogene but has different effects on protein phosphorylation and induction of apoptosis Int J Oncol 1998 12: 717–723

    CAS  PubMed  Google Scholar 

  54. Durie BG . Staging and kinetics of multiple myeloma Semin Oncol 1986 13: 300–309

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a grant from the Dutch Cancer Society (KWF).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Donk, N., Kamphuis, M., Lokhorst, H. et al. The cholesterol lowering drug lovastatin induces cell death in myeloma plasma cells. Leukemia 16, 1362–1371 (2002). https://doi.org/10.1038/sj.leu.2402501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402501

Keywords

This article is cited by

Search

Quick links