Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ferroptosis: mechanisms, biology and role in disease

Abstract

The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of ferroptosis.
Fig. 2: Ferroptosis-suppressing pathways.
Fig. 3: Mechanisms of phospholipid peroxidation.
Fig. 4: Regulatory signalling in ferroptosis.

Similar content being viewed by others

References

  1. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012). This paper introduces the term ferroptosis to describe a new form of non-apoptotic cell death activated by the small molecule erastin.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Distefano, A. M. et al. Heat stress induces ferroptosis-like cell death in plants. J. Cell Biol. 216, 463–476 (2017). This paper represents the first report of a ferroptosis-like cell death process in plants.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bogacz, M. & Krauth-Siegel, R. L. Tryparedoxin peroxidase-deficiency commits trypanosomes to ferroptosis-type cell death. eLife 7, e37503 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Shen, Q., Liang, M. L., Yang, F., Deng, Y. Z. & Naqvi, N. I. Ferroptosis contributes to developmental cell death in rice blast. New Phytol. 227, 1831–1846 (2020).

    CAS  PubMed  Google Scholar 

  5. Jenkins, N. L. et al. Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. eLife https://doi.org/10.7554/eLife.56580 (2020). This paper represents both the first report of ferroptosis in Caenorhabditis elegans and the first report of ferroptosis associated with ageing.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tan, S., Schubert, D. & Maher, P. Oxytosis: a novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497–506 (2001).

    CAS  PubMed  Google Scholar 

  7. Eagle, H. Nutrition needs of mammalian cells in tissue culture. Science 122, 501–514 (1955).

    CAS  PubMed  Google Scholar 

  8. Eagle, H., Piez, K. A. & Oyama, V. I. The biosynthesis of cystine in human cell cultures. J. Biol. Chem. 236, 1425–1428 (1961).

    CAS  PubMed  Google Scholar 

  9. Coltorti, M., De Ritis, F. & Giusti, G. Enzymatic mechanisms of transsulfuration in biology and clinical practice. G. Clin. Med. 37, 285–323 (1956).

    CAS  PubMed  Google Scholar 

  10. Meister, A. Glutathione metabolism. Methods Enzymol. 251, 3–7 (1995).

    CAS  PubMed  Google Scholar 

  11. Bannai, S. & Kitamura, E. Transport interaction of l-cystine and l-glutamate in human diploid fibroblasts in culture. J. Biol. Chem. 255, 2372–2376 (1980).

    CAS  PubMed  Google Scholar 

  12. Sato, H., Tamba, M., Ishii, T. & Bannai, S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem. 274, 11455–11458 (1999).

    CAS  PubMed  Google Scholar 

  13. Shi, Z. Z. et al. Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc. Natl Acad. Sci. USA 97, 5101–5106 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502 (2003).

    CAS  PubMed  Google Scholar 

  15. Banjac, A. et al. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27, 1618–1628 (2008).

    CAS  PubMed  Google Scholar 

  16. Mandal, P. K. et al. System xc and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J. Biol. Chem. 285, 22244–22253 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008). This paper represents a pioneering report on a GPX4-dependent non-apoptotic cell death pathway causing neurodegeneration, before the term ferroptosis had been introduced.

    CAS  PubMed  Google Scholar 

  18. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25, 486–541 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003). This paper reports the discovery of a novel small molecule, termed erastin, in a synthetic lethal screen with oncogenic HRAS, and that erastin activates a non-apoptotic form of cell death.

    CAS  PubMed  Google Scholar 

  21. Yagoda, N. et al. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864–868 (2007).

    PubMed  PubMed Central  Google Scholar 

  22. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014). This paper reports that the small molecule RSL3, which induces ferroptosis, acts by directly inhibiting GPX4, identifying GPX4 as a central regulator of ferroptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dixon, S. J. et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Ursini, F., Maiorino, M., Valente, M., Ferri, L. & Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta 710, 197–211 (1982).

    CAS  PubMed  Google Scholar 

  25. Ursini, F., Maiorino, M. & Gregolin, C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 839, 62–70 (1985).

    CAS  PubMed  Google Scholar 

  26. Maiorino, M., Conrad, M. & Ursini, F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 29, 61–74 (2017).

    PubMed  Google Scholar 

  27. Schwarz, K. & Foltz, C. M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 79, 3292–3293 (1957).

    CAS  Google Scholar 

  28. Bieri, J. G. An effect of selenium and cystine on lipide peroxidation in tissues deficient in vitamin E. Nature 184, 1148–1149 (1959).

    CAS  PubMed  Google Scholar 

  29. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    CAS  PubMed  Google Scholar 

  30. Bateman, L. Olefin oxidation. Q. Rev. Chem. Soc. 8, 147–167 (1954).

    CAS  Google Scholar 

  31. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    CAS  PubMed  Google Scholar 

  32. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015). Together with Doll et al. (2017), this paper identifies ACSL4 as a key positive regulator of ferroptosis, which acts by facilitating the incorporation of PUFAs into phospholipids.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017). This paper identifies phoshatidylethanolamine phospholipids to be specifically relevant to ferroptotic cell death.

    CAS  PubMed  Google Scholar 

  35. Kim, J. H., Lewin, T. M. & Coleman, R. A. Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J. Biol. Chem. 276, 24667–24673 (2001).

    CAS  PubMed  Google Scholar 

  36. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432.e9 (2019). This paper reports that MUFAs suppress ferroptosis and this suppression requires ACSL3.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tesfay, L. et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 79, 5355–5366 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017). This paper reports that mesenchymal cancer cells, which are associated with drug resistance and metastasis, are sensitive to ferroptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown, C. W., Amante, J. J., Goel, H. L. & Mercurio, A. M. The α6β4 integrin promotes resistance to ferroptosis. J. Cell Biol. 216, 4287–4297 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, J. et al. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 572, 402–406 (2019). This paper reports that cell–cell contacts drive resistance to ferroptosis through the NF2–Hippo–YAP pathway, and that multiple malignant mutations can be used as biomarkers to predict the responsiveness of cancer cells to ferroptosis induction.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Y. et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 26, 2284–2299 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lei, G. et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30, 146–162 (2020). This study reports that ionizing radiation induces ferroptosis, suggesting that clinically used radiotherapy works in part by inducing ferroptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Porter, N. A., Caldwell, S. E. & Mills, K. A. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30, 277–290 (1995).

    CAS  PubMed  Google Scholar 

  45. Kuhn, H., Banthiya, S. & van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 1851, 308–330 (2015).

    CAS  PubMed  Google Scholar 

  46. Li, Y., Maher, P. & Schubert, D. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19, 453–463 (1997).

    CAS  PubMed  Google Scholar 

  47. van Leyen, K. et al. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 37, 3014–3018 (2006).

    PubMed  Google Scholar 

  48. Jin, G. et al. Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39, 2538–2543 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014). This paper reports that loss of Gpx4 causes renal failure, which can be suppressed by ferroptosis inhibitors.

    CAS  PubMed  Google Scholar 

  50. Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shah, R., Shchepinov, M. S. & Pratt, D. A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387–396 (2018). Together with Zilka et al. (2017), this paper evaluates the relative contributions of LOXs and enzyme-free radical propagation mechanisms in mediating ferroptosis, as well as the function of radical-trapping antioxidants such as ferrostatin 1 and liproxstatin 1 in suppressing ferroptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu, B. et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol. 21, 579–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Proneth, B. & Conrad, M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 26, 14–24 (2019).

    CAS  PubMed  Google Scholar 

  55. Friedmann Angeli, J. P., Krysko, D. V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019).

    CAS  PubMed  Google Scholar 

  56. Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641.e26 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vance, R. E., Hong, S., Gronert, K., Serhan, C. N. & Mekalanos, J. J. The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc. Natl Acad. Sci. USA 101, 2135–2139 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Aldrovandi, M. et al. Specific oxygenation of plasma membrane phospholipids by Pseudomonas aeruginosa lipoxygenase induces structural and functional alterations in mammalian cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 152–164 (2018).

    CAS  PubMed  Google Scholar 

  59. Dar, H. H. et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J. Clin. Invest. 128, 4639–4653 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Zou, Y. et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 16, 302–309 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghosh, M. K., Mukhopadhyay, M. & Chatterjee, I. B. NADPH-initiated cytochrome P450-dependent free iron-independent microsomal lipid peroxidation: specific prevention by ascorbic acid. Mol. Cell Biochem. 166, 35–44 (1997).

    CAS  PubMed  Google Scholar 

  62. Zhang, D. L., Ghosh, M. C. & Rouault, T. A. The physiological functions of iron regulatory proteins in iron homeostasis — an update. Front. Pharmacol. 5, 124 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Andrews, N. C. & Schmidt, P. J. Iron homeostasis. Annu. Rev. Physiol. 69, 69–85 (2007).

    CAS  PubMed  Google Scholar 

  64. Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016). Together with Hou et al. (2016), this paper reports that ferritinophagy, degradation of ferritin through an autophagic process, facilitates ferroptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015). This paper reports that glutaminolysis and transferrin-derived iron are essential for cysteine deprivation-induced ferroptosis, and represents the first report showing that ferroptosis inhibition might be effective for treating ischaemic heart disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tuo, Q. Z. et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatr. 22, 1520–1530 (2017). This paper reports that inhibition of ferroptosis alleviates the extent of ischaemic stroke, providing the rationale for future strategies to combat brain infarction.

    CAS  Google Scholar 

  68. Brown, C. W. et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell 51, 575–586.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kwon, M. Y., Park, E., Lee, S. J. & Chung, S. W. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6, 24393–24403 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Sun, X. et al. Activation of the p62–Keap1–NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016).

    CAS  PubMed  Google Scholar 

  71. Fang, X. et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ. Res. 127, 486–501 (2020).

    CAS  PubMed  Google Scholar 

  72. Yu, Y. et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 136, 726–739 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363.e3 (2019). This paper reports that normal metabolic function of mitochondria promotes cysteine deprivation-induced ferroptosis, and loss of the tumour suppressor fumarase can make cells more resistant to ferroptosis.

    CAS  PubMed  Google Scholar 

  74. Doherty, J. & Baehrecke, E. H. Life, death and autophagy. Nat. Cell Biol. 20, 1110–1117 (2018).

    CAS  PubMed  Google Scholar 

  75. Tan, S. L., Sagara, Y., Lin, Y. B., Maher, P. & Schubert, D. The regulation of reactive oxygen species production during programmed cell death. J. Cell Biol. 141, 1423–1432 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gao, Z. et al. OsCUL3a-associated molecular switches have functions in cell metabolism, cell death, and disease resistance. J. Agric. Food Chem. 68, 5471–5482 (2020).

    CAS  PubMed  Google Scholar 

  77. Hajdinak, P., Czobor, A. & Szarka, A. The potential role of acrolein in plant ferroptosis-like cell death. PLoS ONE 14, e0227278 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dangol, S., Chen, Y., Hwang, B. K. & Jwa, N. S. Iron- and reactive oxygen species-dependent ferroptotic cell death in rice–Magnaporthe oryzae interactions. Plant. Cell 31, 189–209 (2019).

    CAS  PubMed  Google Scholar 

  79. Lee, H. et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol. 22, 225–234 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, C. et al. LKB1–AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal. Transduct. Target. Ther. 5, 187 (2020). Together with Lee et al. (2020), this paper reports that energy stress suppresses ferroptosis through the AMPK pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019). Together with Bersuker et al. (2019), this paper reports the discovery of a GPX4-independent pathway for suppressing ferroptosis involving NADPH, FSP1 and ubiquinone.

    CAS  PubMed  Google Scholar 

  83. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    CAS  PubMed  Google Scholar 

  84. Wu, M., Xu, L. G., Li, X., Zhai, Z. & Shu, H. B. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J. Biol. Chem. 277, 25617–25623 (2002).

    CAS  PubMed  Google Scholar 

  85. Ohiro, Y. et al. A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett. 524, 163–171 (2002).

    CAS  PubMed  Google Scholar 

  86. Reinhardt, C. et al. AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165746 (2020).

    CAS  PubMed  Google Scholar 

  87. Elguindy, M. M. & Nakamaru-Ogiso, E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH:ubiquinone oxidoreductases (NDH-2). J. Biol. Chem. 290, 20815–20826 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nyquist, S. E., Barr, R. & Morre, D. J. Ubiquinone from rat liver Golgi apparatus fractions. Biochim. Biophys. Acta 208, 532–534 (1970).

    CAS  PubMed  Google Scholar 

  89. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020). This paper reports the discovery of a GCH1–BH4-dependent pathway that suppresses ferroptosis independently of GPX4.

    CAS  PubMed  Google Scholar 

  90. Soula, M. et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Douglas, G. et al. A requirement for Gch1 and tetrahydrobiopterin in embryonic development. Dev. Biol. 399, 129–138 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Anandhan, A., Dodson, M., Schmidlin, C. J., Liu, P. & Zhang, D. D. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem. Biol. 27, 436–447 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Conrad, M. & Proneth, B. Selenium: tracing another essential element of ferroptotic cell death. Cell Chem. Biol. 27, 409–419 (2020).

    CAS  PubMed  Google Scholar 

  95. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422.e21 (2018).

    CAS  PubMed  Google Scholar 

  96. Alim, I. et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177, 1262–1279.e25 (2019).

    CAS  PubMed  Google Scholar 

  97. Speckmann, B. et al. Induction of glutathione peroxidase 4 expression during enterocytic cell differentiation. J. Biol. Chem. 286, 10764–10772 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, H. S., Chen, C. J. & Chang, W. C. The CCAAT-box binding factor NF-Y is required for the expression of phospholipid hydroperoxide glutathione peroxidase in human epidermoid carcinoma A431 cells. FEBS Lett. 455, 111–116 (1999).

    CAS  PubMed  Google Scholar 

  99. Ufer, C. et al. Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev. 22, 1838–1850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schneider, M. et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. Faseb J. 23, 3233–3242 (2009).

    CAS  PubMed  Google Scholar 

  101. Orian, L. et al. Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study. Free Radic. Biol. Med. 87, 1–14 (2015).

    CAS  PubMed  Google Scholar 

  102. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016). This paper reports the discovery of a novel inducer of ferroptosis, FIN56, which acts by depleting GPX4 protein and suppressing mevalonate-derived ubiquinone production.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gaschler, M. M. et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 14, 507–515 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, G. Q. et al. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27, 242–254 (2020).

    CAS  PubMed  Google Scholar 

  105. Horikoshi, N., Cong, J., Kley, N. & Shenk, T. Isolation of differentially expressed cDNAs from p53-dependent apoptotic cells: activation of the human homologue of the Drosophila peroxidasin gene. Biochem. Biophys. Res. Commun. 261, 864–869 (1999).

    CAS  PubMed  Google Scholar 

  106. Chorley, B. N. et al. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor α. Nucleic Acids Res. 40, 7416–7429 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nguyen, H. P. et al. Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis. Mol. Cell 77, 600–617.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Venkatesh, D. et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev. 34, 526–543 (2020). This paper reports that the MDM2–MDMX complex facilitates ferroptosis by suppressing PPARα-mediated induction of FSP1 and subsequent reduction in ubiquinone levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fan, F. Y. et al. The inhibitory effect of MEG3/miR-214/AIFM2 axis on the growth of T-cell lymphoblastic lymphoma. Int. J. Oncol. 51, 316–326 (2017).

    CAS  PubMed  Google Scholar 

  110. Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, B., Lei, Q. Y. & Guan, K. L. The Hippo–YAP pathway: new connections between regulation of organ size and cancer. Curr. Opin. Cell Biol. 20, 638–646 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Schneider, M. et al. Absence of glutathione peroxidase 4 affects tumor angiogenesis through Increased 12/15-lipoxygenase activity. Neoplasia 12, 254–263 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang, W. H. et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 28, 2501–2508.e4 (2019).

    CAS  PubMed  Google Scholar 

  114. Gul, I. S., Hulpiau, P., Saeys, Y. & van Roy, F. Evolution and diversity of cadherins and catenins. Exp. Cell Res. 358, 3–9 (2017).

    CAS  PubMed  Google Scholar 

  115. Green, D. R., Galluzzi, L. & Kroemer, G. Metabolic control of cell death. Science 345, 1250256 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Hay, N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635–649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sugiyama, T. et al. Clinical characteristics of clear cell carcinoma of the ovary—a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 88, 2584–2589 (2000).

    CAS  PubMed  Google Scholar 

  118. Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Bio. 21, 363–383 (2020).

    CAS  Google Scholar 

  121. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015). This paper reports that the tumour suppressor p53 acts, in part, by sensitizing cells to ferroptosis by mitigating SLC7A11 expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, S. J. et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17, 366–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jennis, M. et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 30, 918–930 (2016). This paper reports that a polymorphism in the TP53 tumour suppressor gene that impairs tumour suppression also has impaired ferroptosis-promoting activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704 (2017).

    CAS  PubMed  Google Scholar 

  125. Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002). This paper reports that the tumour suppressor BAP1 can sensitize cells to ferroptosis by reducing SLC7A11 expression.

    CAS  PubMed  Google Scholar 

  128. Green, D. R. The coming decade of cell death research: five riddles. Cell 177, 1094–1107 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sato, H., Fujiwara, K., Sagara, J. & Bannai, S. Induction of cystine transport activity in mouse peritoneal macrophages by bacterial lipopolysaccharide. Biochem. J. 310, 547–551 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019). This paper reports that activated CD8+ T cells act to drive tumour cell ferroptosis through repression of SLC7A11, and that combination of immune checkpoint blockade with ferroptosis induction is a potentially highly effective cancer therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Schnurr, K., Borchert, A. & Kuhn, H. Inverse regulation of lipid-peroxidizing and hydroperoxyl lipid-reducing enzymes by interleukins 4 and 13. FASEB J. 13, 143–154 (1999).

    CAS  PubMed  Google Scholar 

  132. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017). This study reports that drug-resistant cancer cells that persist after targeted therapy are hypersensitive to GPX4 inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Manz, D. H., Blanchette, N. L., Paul, B. T., Torti, F. M. & Torti, S. V. Iron and cancer: recent insights. Ann. Ny. Acad. Sci. 1368, 149–161 (2016).

    CAS  PubMed  Google Scholar 

  135. Torti, S. V. & Torti, F. M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13, 342–355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. de la Vega, M. R., Chapman, E. & Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43 (2018).

    PubMed Central  Google Scholar 

  137. Hansen, C. G., Moroishi, T. & Guan, K. L. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 25, 499–513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Piccolo, S., Dupont, S. & Cordenonsi, M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014).

    CAS  PubMed  Google Scholar 

  139. Johnston, F. M. & Beckman, M. Updates on management of gastric cancer. Curr. Oncol. Rep. 21, 67 (2019).

    PubMed  Google Scholar 

  140. Bueno, R. et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 48, 407–416 (2016).

    CAS  PubMed  Google Scholar 

  141. Hassannia, B., Vandenabeele, P. & Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849 (2019).

    CAS  PubMed  Google Scholar 

  142. Hassannia, B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. 128, 3341–3355 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. Chen, Y. et al. Quantitative profiling of protein carbonylations in ferroptosis by an aniline-derived probe. J. Am. Chem. Soc. 140, 4712–4720 (2018).

    CAS  PubMed  Google Scholar 

  144. Eaton, J. K., Ruberto, R. A., Kramm, A., Viswanathan, V. S. & Schreiber, S. L. Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J. Am. Chem. Soc. 141, 20407–20415 (2019).

    CAS  PubMed  Google Scholar 

  145. Eaton, J. K. et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol. 16, 497–506 (2020). This paper reports a new class of masked nitrile oxide electrophiles as prodrugs for selectively targeting GPX4 in cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sato, H. et al. Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280, 37423–37429 (2005).

    CAS  PubMed  Google Scholar 

  147. Robert, S. M. et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl. Med. 7, 289ra286 (2015).

    Google Scholar 

  148. Chung, W. J. et al. Inhibition of cystine uptake disrupts the growth of primary brain tumors. J. Neurosci. 25, 7101–7110 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, Y. et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623–633.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen, R. S. et al. Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/β-catenin pathway. Oncogene 28, 599–609 (2009).

    CAS  PubMed  Google Scholar 

  151. Savaskan, N. E. et al. Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat. Med. 14, 629–632 (2008).

    CAS  PubMed  Google Scholar 

  152. Arensman, M. D. et al. Cystine-glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity. Proc. Natl Acad. Sci. USA 116, 9533–9542 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Daher, B. et al. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res. 79, 3877–3890 (2019).

    CAS  PubMed  Google Scholar 

  154. Lim, J. K. M. et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl Acad. Sci. USA 116, 9433–9442 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020). This study reports that inducible genetic deletion of SLC7A11 suppresses pancreatic cancer development in a genetically engineered model of pancreatic ductal adenocarcinoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Sato, M. et al. Loss of the cystine/glutamate antiporter in melanoma abrogates tumor metastasis and markedly increases survival rates of mice. Int. J. Cancer 147, 3224–3235 (2020).

    CAS  PubMed  Google Scholar 

  157. Mei, J., Webb, S., Zhang, B. & Shu, H. B. The p53-inducible apoptotic protein AMID is not required for normal development and tumor suppression. Oncogene 25, 849–856 (2006).

    CAS  PubMed  Google Scholar 

  158. Ye, L. F. et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol. 15, 469–484 (2020). This paper reports that radiation induces ferroptosis and that ferroptosis-inducing compounds are radiosensitizers.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, X. et al. Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-1. J. Inflamm. https://doi.org/10.1186/s12950-019-0216-0 (2019).

    Article  Google Scholar 

  161. Zhang, X. H. et al. Ionizing radiation induces ferroptosis in granulocyte–macrophage hematopoietic progenitor cells of murine bone marrow. Int. J. Radiat. Biol. 96, 584–595 (2020).

    CAS  PubMed  Google Scholar 

  162. Benjamin, E. J. et al. Heart disease and stroke statistics — 2017 update: a report from the American Heart Association. Circulation 135, E146–E603 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Lau, A. & Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflug. Arch. Eur. J. Phy 460, 525–542 (2010).

    CAS  Google Scholar 

  164. Chen, L. J., Hambright, W. S., Na, R. & Ran, Q. T. Ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J. Biol. Chem. 290, 28097–28106 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Hambright, W. S., Fonseca, R. S., Chen, L. J., Na, R. & Ran, Q. T. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 12, 8–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Wirth, E. K. et al. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J. 24, 844–852 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Belaidi, A. A. & Bush, A. I. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J. Neurochem. 139, 179–197 (2016).

    CAS  PubMed  Google Scholar 

  168. Masaldan, S., Bush, A. I., Devos, D., Rolland, A. S. & Moreau, C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic. Bio Med. 133, 221–233 (2019).

    CAS  Google Scholar 

  169. Fang, X. X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl Acad. Sci. USA 116, 2672–2680 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Martin-Sanchez, D. et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 28, 218–229 (2017).

    CAS  PubMed  Google Scholar 

  172. Belavgeni, A., Meyer, C., Stumpf, J., Hugo, C. & Linkermann, A. Ferroptosis and necroptosis in the kidney. Cell Chem. Biol. 27, 448–462 (2020).

    CAS  PubMed  Google Scholar 

  173. Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).

    CAS  PubMed  Google Scholar 

  174. Carlson, B. A. et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9, 22–31 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Li, W. et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Invest. 129, 2293–2304 (2019).

    PubMed  PubMed Central  Google Scholar 

  176. Shchepinov, M. S. Polyunsaturated fatty acid deuteration against neurodegeneration. Trends Pharmacol. Sci. 41, 236–248 (2020).

    CAS  PubMed  Google Scholar 

  177. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mai, T. T. et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9, 1025–1033 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Feng, H. et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30, 3411–3423.e7 (2020). This paper reports that the transferrin receptor TfR1 is a marker for ferroptosis, providing an additional means to monitor ferroptosis beyond assays for lipid peroxidation.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Aron, A. T., Loehr, M. O., Bogena, J. & Chang, C. J. An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells. J. Am. Chem. Soc. 138, 14338–14346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Devos, D. et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Sign 21, 195–210 (2014).

    CAS  Google Scholar 

  182. Zhang, Z. et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 14, 2083–2103 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Hu, C. L. et al. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurochem. 148, 426–439 (2019).

    CAS  PubMed  Google Scholar 

  184. Kim, E. H., Wong, S. W. & Martinez, J. Programmed necrosis and disease: we interrupt your regular programming to bring you necroinflammation. Cell Death Differ. 26, 25–40 (2019).

    PubMed  Google Scholar 

  185. Amaral, E. P. et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J. Exp. Med. 216, 556–570 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Park, E. J., Park, Y. J., Lee, S. J., Lee, K. & Yoon, C. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol. Lett. 303, 55–66 (2019).

    CAS  PubMed  Google Scholar 

  187. Yoshida, M. et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat. Commun. 10, 3145 (2019).

    PubMed  PubMed Central  Google Scholar 

  188. Nobuta, H. et al. Oligodendrocyte death in Pelizaeus–Merzbacher disease is rescued by iron chelation. Cell Stem Cell 25, 531–541.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Wortmann, M. et al. Combined deficiency in glutathione peroxidase 4 and vitamin E causes multiorgan thrombus formation and early death in mice. Circ. Res. 113, 408–417 (2013). This paper reports that phenotypes induced by the loss of the key ferroptosis regulator GPX4 can be masked by dietary vitamin E in certain tissues in mice.

    CAS  PubMed  Google Scholar 

  190. Altamura, S. et al. Glutathione peroxidase 4 and vitamin E control reticulocyte maturation, stress erythropoiesis and iron homeostasis. Haematologica 105, 937–950 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 306, 1549–1556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Shah, R., Farmer, L. A., Zilka, O., Van Kessel, A. T. M. & Pratt, D. A. Beyond DPPH: use of fluorescence-enabled inhibited autoxidation to predict oxidative cell death rescue. Cell Chem. Biol. 26, 1594–1607.e7 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.J. is supported by National Institutes of Health (NIH) grants R01CA204232 and R01CA166413, a Memorial Sloan Kettering Cancer Center (MSKCC) Functional Genomic Initiative grant, as well as a National Cancer Institute (NCI) Cancer Centre core grant P30 CA008748 to MSKCC. B.R.S. is supported by NCI grants P01CA87497 and R35CA209896 and National Institute of Neurological Disorders and Stroke (NINDS) grant R61NS109407. M.C. is supported by the Deutsche Forschungsgemeinschaft (DFG) CO 291/5-2 and CO 291/7-1, the German Federal Ministry of Education and Research (BMBF) VIP+ programme NEUROPROTEKT (03VP04260), the Helmholtz Validation Fund (0042), the Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1933), the Else Kröner-Fresenius-Stiftung and the m4 Award provided by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi). M.C. has further received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. GA 884754).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Xuejun Jiang, Brent R. Stockwell or Marcus Conrad.

Ethics declarations

Competing interests

X.J. is an inventor on patents and patent applications involving programmed cell death and autophagy. B.R.S. is an inventor on patents and patent applications involving ferroptosis, co-founded and serves as a consultant to Inzen Therapeutics and Nevrox Limited, and serves as a consultant to Weatherwax Biotechnologies Corporation. M.C. is an inventor on patents for some of the compounds described herein, and co-founder of ROSCUE Therapeutics GmbH.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks F. Wang, A. Bush and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lipid peroxidation

The oxidative destruction of lipids, whereby free radicals snitch electrons from polyunsaturated fatty acid residues in cellular membranes. This in turn leads to the formation of carbon-centred lipid radicals, which can initiate the lipid peroxidation chain reaction if not inhibited enzymatically or by lipophilic antioxidants.

Iron–sulfur clusters

Small molecular structures consisting of iron and sulfur, which are mostly integrated into enzymes and larger protein complexes mediating electron transfer.

Glutathione peroxidases

(GPXs). A family of structurally related enzymes that usually reduce hydrogen peroxide (H2O2) and other organic peroxides to water and alcohols, respectively, using mostly glutathione (GSH) as an electron donor.

Glutathione-S-transferases

A large family of enzymes that catalyse the conjugation of the reduced form of glutathione (GSH) to xenobiotics (via a sulfhydryl group) for detoxification purposes.

Thiol deprivation

A cellular condition marked by cysteine deprivation, causing glutathione (GSH) depletion and endoplasmic reticulum stress.

Reactive oxygen species

(ROS). Partially reduced forms of oxygen, such as hydroperoxides, superoxide, singlet oxygen and hydroxyl radicals, that may oxidize and thereby destroy cellular components including lipids, protein and DNA.

Selenoprotein

A protein into which the element selenium is co-translationally incorporated in the form of selenocysteine that usually constitutes the active site and is frequently involved in oxidative defence.

Free radicals

Molecules with an unpaired electron in the outer orbit such as the hydroxyl radical and peroxyl radical, whereby they become generally unstable and highly reactive.

Ischaemia–reperfusion

Organ tissue damage resulting from limited blood flow and oxygen deprivation followed by reintroduction of blood flow and oxygenation, causing oxygen radical formation, cell death and tissue detriment. Examples include ischaemic heart disease and ischaemic kidney failure.

Fenton reaction

A chemical reaction between iron and hydrogen peroxide (H2O2) yielding the highly toxic free radicals, which in turn can spark lipid peroxidation.

Cyclooxygenases

A family of two dedicated enzymes in mammals that oxygenate arachidonic acid to produce prostanoids that mediate numerous physiological processes including inflammation, angiogenesis and pain.

Ferritin

An iron storage protein in cells that binds and sequesters intracellular iron in the form of ferric ion.

Transferrin

A protein that transports iron into cells through receptor-mediated endocytosis.

Anaplerotic metabolite

A metabolite that functions in the replenishment of certain metabolic pathways. For example, glutamine, through generating α-ketoglutarate, can replenish the tricarboxylic acid (TCA) cycle.

Ubiquinone

A lipophilic metabolite (also known as coenzyme Q10) generated by the mevalonate pathway that widely acts by shuttling electrons in the mitochondrial respiratory chain.

Mevalonate pathway

A lipid biosynthesis pathway that produces terpene-derived compounds such as cholesterol and ubiquinone.

Isopentenylation

The post-transcriptional modification of base 37 in tRNA with isopentenyl leading to the formation of N6-isopentenyl adenosine (i6A).

Pyroptosis

A form of inflammatory, non-apoptotic cell death mostly occurring in immune and epithelial cells, in response to conditions such as infection of intracellular pathogens; executed by membrane pore-forming gasdermin proteins after cleavage by caspase-containing inflammasome complex.

Necroptosis

The first described form of regulated necrosis based on findings that TNFα not only triggers apoptosis but also necrosis under specific conditions in some cells. Necroptosis is mediated by the RIP3 kinase and MLKL, and is implicated in inflammation.

Immune checkpoint blockade

The process of activating immune cells by inhibiting a signalling pathway that normally suppresses their activity; therapeutically, inhibiting cancer cell immune checkpoint enables the human immune system to eliminate cancer cells.

Excitotoxic cell death

A form of neuronal cell death elicited by exposure of glutamate receptor-expressing neurons to excess glutamate or related excitatory amino acids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Stockwell, B.R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22, 266–282 (2021). https://doi.org/10.1038/s41580-020-00324-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-00324-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing