Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles and regulation of histone methylation in animal development

An Author Correction to this article was published on 07 November 2019

This article has been updated

Abstract

Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of regulation of gene expression by histone methyltransferases and demethylases.
Fig. 2: The importance of histone methylation regulators in mammalian development and organogenesis.
Fig. 3: Developmental processes regulated by histone methylation.

Similar content being viewed by others

Change history

  • 07 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Greenberg, M. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. In the press.

  2. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  3. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  4. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006). An early paper demonstrating bivalent histone methylation marks and their functions.

    CAS  PubMed  Google Scholar 

  5. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. van Arensbergen, J. et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res. 20, 722–732 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    CAS  PubMed  Google Scholar 

  9. Bannister, A. J. et al. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 280, 17732–17736 (2005).

    CAS  PubMed  Google Scholar 

  10. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    CAS  PubMed  Google Scholar 

  12. Trojer, P. & Reinberg, D. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell 28, 1–13 (2007).

    CAS  PubMed  Google Scholar 

  13. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    CAS  PubMed  Google Scholar 

  14. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000). First demonstration of the histone methyltransferase activity of the SET domain.

    CAS  PubMed  Google Scholar 

  15. Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003).

    CAS  PubMed  Google Scholar 

  16. Lin, W. J., Gary, J. D., Yang, M. C., Clarke, S. & Herschman, H. R. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem. 271, 15034–15044 (1996).

    CAS  PubMed  Google Scholar 

  17. Tang, J. et al. PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J. Biol. Chem. 275, 7723–7730 (2000).

    CAS  PubMed  Google Scholar 

  18. Guccione, E. & Richard, S. The regulation, functions and clinical relevance of arginine methylation. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-019-0155-x (2019).

    CAS  PubMed  Google Scholar 

  19. Majumder, S. et al. Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription. J. Cell. Biochem. 109, 553–563 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dacwag, C. S., Ohkawa, Y., Pal, S., Sif, S. & Imbalzano, A. N. The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling. Mol. Cell. Biol. 27, 384–394 (2007).

    CAS  PubMed  Google Scholar 

  21. Girardot, M. et al. PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome. Nucleic Acids Res. 42, 235–248 (2014).

    CAS  PubMed  Google Scholar 

  22. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    CAS  PubMed  Google Scholar 

  23. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, Y. & Garcia, B. A. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb. Perspect. Biol. 7, a025064 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Yang, L. et al. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21, 148–152 (2002).

    CAS  PubMed  Google Scholar 

  27. Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).

    CAS  PubMed  Google Scholar 

  28. Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207–1217 (2001).

    CAS  PubMed  Google Scholar 

  29. Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishioka, K. et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell 9, 1201–1213 (2002).

    CAS  PubMed  Google Scholar 

  31. Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058 (2002).

    CAS  PubMed  Google Scholar 

  32. Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).

    PubMed  Google Scholar 

  34. Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  Google Scholar 

  37. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    CAS  PubMed  Google Scholar 

  38. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    CAS  PubMed  Google Scholar 

  40. Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    CAS  PubMed  Google Scholar 

  41. Wang, M., Xu, R. M. & Thompson, P. R. Substrate specificity, processivity, and kinetic mechanism of protein arginine methyltransferase 5. Biochemistry 52, 5430–5440 (2013).

    PubMed  Google Scholar 

  42. Miranda, T. B., Miranda, M., Frankel, A. & Clarke, S. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J. Biol. Chem. 279, 22902–22907 (2004).

    CAS  PubMed  Google Scholar 

  43. Lee, J. H. et al. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J. Biol. Chem. 280, 3656–3664 (2005).

    CAS  PubMed  Google Scholar 

  44. Zurita-Lopez, C. I., Sandberg, T., Kelly, R. & Clarke, S. G. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming omega-NG-monomethylated arginine residues. J. Biol. Chem. 287, 7859–7870 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004). First demonstration of enzymatic demethylase activity.

    CAS  PubMed  Google Scholar 

  46. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    CAS  PubMed  Google Scholar 

  47. Cloos, P. A. et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311 (2006).

    CAS  PubMed  Google Scholar 

  48. Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312–316 (2006).

    CAS  PubMed  Google Scholar 

  49. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    CAS  PubMed  Google Scholar 

  50. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    CAS  PubMed  Google Scholar 

  51. Franci, G., Ciotta, A. & Altucci, L. The Jumonji family: past, present and future of histone demethylases in cancer. Biomol. Concepts 5, 209–224 (2014).

    CAS  PubMed  Google Scholar 

  52. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pena, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    CAS  PubMed  Google Scholar 

  57. Chen, C., Nott, T. J., Jin, J. & Pawson, T. Deciphering arginine methylation: Tudor tells the tale. Nat. Rev. Mol. Cell Biol. 12, 629–642 (2011).

    CAS  PubMed  Google Scholar 

  58. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010). This paper shows how crosstalk is established between DNA methylation and H3K4 methylation deposited by the SETD1 complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Laue, K. et al. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development 135, 1935–1946 (2008).

    CAS  PubMed  Google Scholar 

  60. Qiu, Y. et al. Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription. Genes Dev. 26, 1376–1391 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vezzoli, A. et al. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat. Struct. Mol. Biol. 17, 617–619 (2010).

    CAS  PubMed  Google Scholar 

  62. Ramon-Maiques, S. et al. The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc. Natl Acad. Sci. USA 104, 18993–18998 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Matthews, A. G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, J. D. et al. Proper activity of histone H3 lysine 4 (H3K4) methyltransferase is required for morphogenesis during zebrafish cardiogenesis. Mol. Cells 38, 580–586 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, J. et al. SETD7 drives cardiac lineage commitment through stage-specific transcriptional activation. Cell Stem Cell 22, 428–444 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    CAS  PubMed  Google Scholar 

  67. Lindeman, L. C. et al. Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Dev. Cell 21, 993–1004 (2011). Demonstration that inactive genes can be ‘pre-marked’ for expression later in development.

    CAS  PubMed  Google Scholar 

  68. Dahl, J. A., Reiner, A. H., Klungland, A., Wakayama, T. & Collas, P. Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLOS ONE 5, e9150 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Hawkins, R. D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. & Feinberg, A. P. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet. 41, 246–250 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Towbin, B. D. et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934–947 (2012).

    CAS  PubMed  Google Scholar 

  73. Nicetto, D. et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science 363, 294–297 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

    CAS  PubMed  Google Scholar 

  75. Zhang, B. et al. Widespread enhancer dememorization and promoter priming during parental-to-zygotic transition. Mol. Cell 72, 673–686 (2018).

    PubMed  Google Scholar 

  76. Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016).

    CAS  PubMed  Google Scholar 

  77. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).

    CAS  PubMed  Google Scholar 

  78. Wu, J. et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256–260 (2018).

    CAS  PubMed  Google Scholar 

  79. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).

    CAS  PubMed  Google Scholar 

  80. Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lindeman, L. C. et al. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos. Int. J. Dev. Biol. 54, 803–813 (2010).

    CAS  PubMed  Google Scholar 

  83. Byrd, K. N. & Shearn, A. ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc. Natl Acad. Sci. USA 100, 11535–11540 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ingham, P. W. & Whittle, R. Trithorax: a new homoeotic mutation of Drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. Mol. Gen. Genet. 179, 607–614 (1980).

    Google Scholar 

  85. Slifer, E. H. A mutant stock of Drosophila with extra sex-combs. J. Exp. Zool. 90, 31–40 (1942).

    Google Scholar 

  86. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    CAS  PubMed  Google Scholar 

  87. Struhl, G. A gene product required for correct initiation of segmental determination in Drosophila. Nature 293, 36–41 (1981).

    CAS  PubMed  Google Scholar 

  88. Jurgens, G., Wieschaus, E., Nusslein-Volhard, C. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: II. Zygotic loci on the third chromosome. Wilehm Roux Arch. Dev. Biol. 193, 283–295 (1984).

    CAS  PubMed  Google Scholar 

  89. Nusslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: I. Zygotic loci on the second chromosome. Wilehm Roux Arch. Dev. Biol. 193, 267–282 (1984).

    CAS  PubMed  Google Scholar 

  90. Wieschaus, E., Nusslein-Volhard, C. & Jurgens, G. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: III. Zygotic loci on the X-chromosome and fourth chromosome. Wilehm Roux Arch. Dev. Biol. 193, 296–307 (1984).

    CAS  PubMed  Google Scholar 

  91. Tsurumi, A., Dutta, P., Shang, R., Yan, S. J. & Li, W. X. Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. Sci. Rep. 3, 2894 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Di Stefano, L., Ji, J. Y., Moon, N. S., Herr, A. & Dyson, N. Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. Curr. Biol. 17, 808–812 (2007).

    PubMed  PubMed Central  Google Scholar 

  93. Sankar, A. et al. Maternal expression of the histone demethylase Kdm4a is crucial for pre-implantation development. Development 144, 3264–3277 (2017).

    CAS  PubMed  Google Scholar 

  94. Ancelin, K. et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. eLife 5, e08851 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882–887 (2007).

    CAS  PubMed  Google Scholar 

  96. Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Reuter, G., Dorn, R., Wustmann, G., Friede, B. & Rauh, G. Third chromosome suppressor of position-effect variegation loci in Drosophila melanogaster. Mol. Gen. Genet. 202, 481–487 (1986).

    CAS  Google Scholar 

  98. Andreu-Vieyra, C. V. et al. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLOS Biol. 8, e1000453 (2010).

    PubMed  PubMed Central  Google Scholar 

  99. Dodge, J. E., Kang, Y. K., Beppu, H., Lei, H. & Li, E. Histone H3-K9 methyltransferase ESET is essential for early development. Mol. Cell. Biol. 24, 2478–2486 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T. & Zernicka-Goetz, M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445, 214–218 (2007). Seminal study showing that different amounts of Arg methylation within four-cell blastomeres can account for their different cell fates and potencies during early development.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yadav, N. et al. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc. Natl Acad. Sci. USA 100, 6464–6468 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tee, W. W. et al. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev. 24, 2772–2777 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Pawlak, M. R., Scherer, C. A., Chen, J., Roshon, M. J. & Ruley, H. E. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol. Cell. Biol. 20, 4859–4869 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hess, J. L., Yu, B. D., Li, B., Hanson, R. & Korsmeyer, S. J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90, 1799–1806 (1997).

    CAS  PubMed  Google Scholar 

  105. Jude, C. D. et al. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1, 324–337 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. McMahon, K. A. et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1, 338–345 (2007).

    CAS  PubMed  Google Scholar 

  107. Ernst, P. et al. Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev. Cell 6, 437–443 (2004).

    CAS  PubMed  Google Scholar 

  108. Saleque, S., Kim, J., Rooke, H. M. & Orkin, S. H. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol. Cell 27, 562–572 (2007). Identification of a role and mechanism for LSD1 in regulating haematopoietic differentiation.

    CAS  PubMed  Google Scholar 

  109. Thambyrajah, R. et al. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nat. Cell Biol. 18, 21–32 (2016).

    CAS  PubMed  Google Scholar 

  110. Sprussel, A. et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 26, 2039–2051 (2012).

    CAS  PubMed  Google Scholar 

  111. Kerenyi, M. A. et al. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. eLife 2, e00633 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Ugarte, F. et al. Progressive chromatin condensation and H3K9 methylation regulate the differentiation of embryonic and hematopoietic stem cells. Stem Cell Rep. 5, 728–740 (2015).

    CAS  Google Scholar 

  113. van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769 (1994).

    PubMed  Google Scholar 

  114. Ikeda, K. et al. Maintenance of the functional integrity of mouse hematopoiesis by EED and promotion of leukemogenesis by EED haploinsufficiency. Sci. Rep. 6, 29454 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    CAS  PubMed  Google Scholar 

  116. Ai, S. et al. Divergent requirements for EZH1 in heart development versus regeneration. Circ. Res. 121, 106–112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ai, S. et al. EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. eLife 6, e24570 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Akerberg, A. A., Henner, A., Stewart, S. & Stankunas, K. Histone demethylases Kdm6ba and Kdm6bb redundantly promote cardiomyocyte proliferation during zebrafish heart ventricle maturation. Dev. Biol. 426, 84–96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lan, F. et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694 (2007).

    CAS  PubMed  Google Scholar 

  120. Wijayatunge, R. et al. The histone demethylase Kdm6b regulates a mature gene expression program in differentiating cerebellar granule neurons. Mol. Cell. Neurosci. 87, 4–17 (2018).

    CAS  PubMed  Google Scholar 

  121. Park, D. H. et al. Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell Rep. 8, 1290–1299 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gou, Y. et al. Protein arginine methyltransferase PRMT1 is essential for palatogenesis. J. Dent. Res. 97, 1510–1518 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Iwase, S. et al. A mouse model of X-linked intellectual disability associated with impaired removal of histone methylation. Cell Rep. 14, 1000–1009 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Scandaglia, M. et al. Loss of Kdm5c causes spurious transcription and prevents the fine-tuning of activity-regulated enhancers in neurons. Cell Rep. 21, 47–59 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lim, D. A. et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458, 529–533 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bezzi, M. et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 27, 1903–1916 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hashimoto, M. et al. Severe hypomyelination and developmental defects are caused in mice lacking protein arginine methyltransferase 1 (PRMT1) in the central nervous system. J. Biol. Chem. 291, 2237–2245 (2016).

    CAS  PubMed  Google Scholar 

  128. Chittka, A., Nitarska, J., Grazini, U. & Richardson, W. D. Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. J. Biol. Chem. 287, 42995–43006 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dhar, S. S. et al. MLL4 is required to maintain broad H3K4me3 peaks and super-enhancers at tumor suppressor genes. Mol. Cell 70, 825–841 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Inagaki, T. et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 14, 991–1001 (2009).

    CAS  PubMed  Google Scholar 

  131. Tateishi, K., Okada, Y., Kallin, E. M. & Zhang, Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458, 757–761 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kuroki, S. et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341, 1106–1109 (2013).

    CAS  PubMed  Google Scholar 

  133. Okada, Y., Scott, G., Ray, M. K., Mishina, Y. & Zhang, Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450, 119–123 (2007).

    CAS  PubMed  Google Scholar 

  134. Boswell, R. E. & Mahowald, A. P. tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43, 97–104 (1985).

    CAS  PubMed  Google Scholar 

  135. Capra, J. A. Extrapolating histone marks across developmental stages, tissues, and species: an enhancer prediction case study. BMC Genomics 16, 104 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003). Demonstration of the mechanism of X-chromosome inactivation via recruitment of PRC2 by Xist RNA.

    CAS  PubMed  Google Scholar 

  137. Inoue, A., Jiang, L., Lu, F. & Zhang, Y. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev. 31, 1927–1932 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat. Genet. 28, 371–375 (2001).

    CAS  PubMed  Google Scholar 

  139. Inoue, A., Chen, Z., Yin, Q. & Zhang, Y. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 32, 1525–1536 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lindroth, A. M. et al. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLOS Genet. 4, e1000145 (2008).

    PubMed  PubMed Central  Google Scholar 

  141. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 (2017). Demonstration of a histone-based mechanism of imprinting by H3K27 methylation.

    CAS  PubMed  Google Scholar 

  142. Kuzmin, A. et al. The PcG gene Sfmbt2 is paternally expressed in extraembryonic tissues. Gene Expr. Patterns 8, 107–116 (2008).

    CAS  PubMed  Google Scholar 

  143. Miri, K. et al. The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development. Development 140, 4480–4489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Harding, K., Wedeen, C., McGinnis, W. & Levine, M. Spatially regulated expression of homeotic genes in Drosophila. Science 229, 1236–1242 (1985).

    CAS  PubMed  Google Scholar 

  145. Kondo, T. & Duboule, D. Breaking colinearity in the mouse HoxD complex. Cell 97, 407–417 (1999).

    CAS  PubMed  Google Scholar 

  146. Soshnikova, N. & Duboule, D. Epigenetic temporal control of mouse Hox genes in vivo. Science 324, 1320–1323 (2009).

    CAS  PubMed  Google Scholar 

  147. Ingham, P. W. Differential expression of Bithorax complex genes in the absence of the Extra sex combs and Trithorax genes. Nature 306, 591–593 (1983). First demonstration that Trithorax and Polycomb genes have opposing effects on Hox gene expression.

    CAS  PubMed  Google Scholar 

  148. Simon, J., Chiang, A. & Bender, W. Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. Development 114, 493–505 (1992).

    CAS  PubMed  Google Scholar 

  149. Struhl, G. & Akam, M. Altered distributions of Ultrabithorax transcripts in extra sex combs mutant embryos of Drosophila. EMBO J. 4, 3259–3264 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Klymenko, T. & Muller, J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep. 5, 373–377 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Yagi, H. et al. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 92, 108–117 (1998).

    CAS  PubMed  Google Scholar 

  152. Yu, B. D., Hanson, R. D., Hess, J. L., Horning, S. E. & Korsmeyer, S. J. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc. Natl Acad. Sci. USA 95, 10632–10636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995). Initial link between MLL1 and HOX gene expression during mammalian embryogenesis.

    CAS  PubMed  Google Scholar 

  154. Breen, T. R. & Harte, P. J. Molecular characterization of the trithorax gene, a positive regulator of homeotic gene expression in Drosophila. Mech. Dev. 35, 113–127 (1991).

    CAS  PubMed  Google Scholar 

  155. Foster, C. T. et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell. Biol. 30, 4851–4863 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ang, S. Y. et al. KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development 143, 810–821 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bledau, A. S. et al. The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development 141, 1022–1035 (2014).

    CAS  PubMed  Google Scholar 

  158. Glaser, S. et al. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133, 1423–1432 (2006).

    CAS  PubMed  Google Scholar 

  159. Wu, M. et al. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28, 7337–7344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    CAS  PubMed  Google Scholar 

  161. Hu, D. et al. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33, 4745–4754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. O’Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 21, 4330–4336 (2001).

    PubMed  PubMed Central  Google Scholar 

  163. Huang, X. J. et al. EZH2 is essential for development of mouse preimplantation embryos. Reprod. Fertil. Dev. 26, 1166–1175 (2014).

    CAS  PubMed  Google Scholar 

  164. Wyngaarden, L. A., Delgado-Olguin, P., Su, I. H., Bruneau, B. G. & Hopyan, S. Ezh2 regulates anteroposterior axis specification and proximodistal axis elongation in the developing limb. Development 138, 3759–3767 (2011).

    CAS  PubMed  Google Scholar 

  165. Schwarz, D. et al. Ezh2 is required for neural crest-derived cartilage and bone formation. Development 141, 867–877 (2014).

    CAS  PubMed  Google Scholar 

  166. Faust, C., Lawson, K. A., Schork, N. J., Thiel, B. & Magnuson, T. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development 125, 4495–4506 (1998).

    CAS  PubMed  Google Scholar 

  167. Faust, C., Schumacher, A., Holdener, B. & Magnuson, T. The eed mutation disrupts anterior mesoderm production in mice. Development 121, 273–285 (1995).

    CAS  PubMed  Google Scholar 

  168. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. van der Lugt, N. M., Alkema, M., Berns, A. & Deschamps, J. The Polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. Mech. Dev. 58, 153–164 (1996).

    PubMed  Google Scholar 

  170. Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    CAS  PubMed  Google Scholar 

  171. Shpargel, K. B., Sengoku, T., Yokoyama, S. & Magnuson, T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLOS Genet. 8, e1002964 (2012). This paper shows a catalytically independent role of KDM6A in recruiting chromatin regulators that can be substituted for by the catalytically inactive KDM6C.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Hong, S. et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA 104, 18439–18444 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Naruse, C. et al. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice. FASEB J. 31, 2252–2266 (2017).

    CAS  PubMed  Google Scholar 

  174. Denissov, S. et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141, 526–537 (2014).

    CAS  PubMed  Google Scholar 

  175. Zhang, H. et al. MLL1 inhibition reprograms epiblast stem cells to naive pluripotency. Cell Stem Cell 18, 481–494 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lubitz, S., Glaser, S., Schaft, J., Stewart, A. F. & Anastassiadis, K. Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase Mll2. Mol. Biol. Cell 18, 2356–2366 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Glaser, S. et al. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2, 5 (2009).

    PubMed  PubMed Central  Google Scholar 

  178. Sze, C. C. et al. Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation. Genes Dev. 31, 1732–1737 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Obier, N. et al. Polycomb protein EED is required for silencing of pluripotency genes upon ESC differentiation. Stem Cell Rev. 11, 50–61 (2015).

    CAS  Google Scholar 

  181. Jiang, W., Wang, J. & Zhang, Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. Cell Res. 23, 122–130 (2013).

    CAS  PubMed  Google Scholar 

  182. Lee, S., Lee, J. W. & Lee, S. K. UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev. Cell 22, 25–37 (2012).

    CAS  PubMed  Google Scholar 

  183. Adamo, A. et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat. Cell Biol. 13, 652–659 (2011).

    CAS  PubMed  Google Scholar 

  184. Loh, Y. H., Zhang, W., Chen, X., George, J. & Ng, H. H. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 21, 2545–2557 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wu, Q. et al. CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation. Stem Cells 27, 2637–2645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Xu, Z. et al. MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells. PLOS ONE 8, e53146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Cao, K. et al. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression. Genes Dev. 31, 787–801 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Tomaz, R. A. et al. Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development 144, 567–579 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Wan, X. et al. Mll2 controls cardiac lineage differentiation of mouse embryonic stem cells by promoting H3K4me3 deposition at cardiac-specific genes. Stem Cell Rev. 10, 643–652 (2014).

    CAS  Google Scholar 

  190. Lee, Y. H. et al. Protein arginine methyltransferase 6 regulates embryonic stem cell identity. Stem Cells Dev. 21, 2613–2622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Ma, D. K., Chiang, C. H., Ponnusamy, K., Ming, G. L. & Song, H. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26, 2131–2141 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Jones, W. D. et al. De novo mutations in MLL cause Wiedemann–Steiner syndrome. Am. J. Hum. Genet. 91, 358–364 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Meyer, E. et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat. Genet. 49, 223–237 (2017).

    CAS  PubMed  Google Scholar 

  195. Kleefstra, T. et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am. J. Hum. Genet. 91, 73–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    PubMed  PubMed Central  Google Scholar 

  197. Hannibal, M. C. et al. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am. J. Med. Genet. A 155A, 1511–1516 (2011).

    PubMed  Google Scholar 

  198. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Hiraide, T. et al. De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Hum. Genet. 137, 95–104 (2018).

    CAS  PubMed  Google Scholar 

  200. Abidi, F. E. et al. Mutations in JARID1C are associated with X-linked mental retardation, short stature and hyperreflexia. J. Med. Genet. 45, 787–793 (2008).

    CAS  PubMed  Google Scholar 

  201. Goncalves, T. F. et al. KDM5C mutational screening among males with intellectual disability suggestive of X-Linked inheritance and review of the literature. Eur. J. Med. Genet. 57, 138–144 (2014).

    PubMed  Google Scholar 

  202. Jensen, L. R. et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76, 227–236 (2005).

    CAS  PubMed  Google Scholar 

  203. Chong, J. X. et al. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet. Med. 18, 788–795 (2016).

    CAS  PubMed  Google Scholar 

  204. Tunovic, S., Barkovich, J., Sherr, E. H. & Slavotinek, A. M. De novo ANKRD11 and KDM1A gene mutations in a male with features of KBG syndrome and Kabuki syndrome. Am. J. Med. Genet. A 164A, 1744–1749 (2014).

    PubMed  Google Scholar 

  205. Kim, H. G. et al. Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. Am. J. Hum. Genet. 91, 56–72 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Horton, J. R. et al. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat. Struct. Mol. Biol. 17, 38–43 (2010).

    CAS  PubMed  Google Scholar 

  207. Feng, W., Yonezawa, M., Ye, J., Jenuwein, T. & Grummt, I. PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat. Struct. Mol. Biol. 17, 445–450 (2010).

    CAS  PubMed  Google Scholar 

  208. Abidi, F., Miano, M., Murray, J. & Schwartz, C. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin. Genet. 72, 19–22 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Koivisto, A. M. et al. Screening of mutations in the PHF8 gene and identification of a novel mutation in a Finnish family with XLMR and cleft lip/cleft palate. Clin. Genet. 72, 145–149 (2007).

    CAS  PubMed  Google Scholar 

  210. Laumonnier, F. et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42, 780–786 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Kleefstra, T. et al. Disruption of the gene euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J. Med. Genet. 42, 299–306 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Qi, H. H. et al. Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 466, 503–507 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Iacono, G. et al. Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Res. 46, 4950–4965 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Gibson, W. T. et al. Mutations in EZH2 cause Weaver syndrome. Am. J. Hum. Genet. 90, 110–118 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Douglas, J. et al. NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes. Am. J. Hum. Genet. 72, 132–143 (2003). Describes non-overlapping sets of point mutations or deletions in NSD1 that are associated with two distinct syndromes.

    CAS  PubMed  Google Scholar 

  216. Rio, M. et al. Spectrum of NSD1 mutations in Sotos and Weaver syndromes. J. Med. Genet. 40, 436–440 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Baujat, G. et al. Paradoxical NSD1 mutations in Beckwith–Wiedemann syndrome and 11p15 anomalies in Sotos syndrome. Am. J. Hum. Genet. 74, 715–720 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Bennett, R. L., Swaroop, A., Troche, C. & Licht, J. D. The role of nuclear receptor-binding SET domain family histone lysine methyltransferases in cancer. Cold Spring. Harb. Perspect. Med. 7, a026708 (2017).

    PubMed  PubMed Central  Google Scholar 

  219. Laugesen, A., Hojfeldt, J. W. & Helin, K. Role of the polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harb. Perspect. Med. 6, a026575 (2016).

    PubMed  PubMed Central  Google Scholar 

  220. Michalak, E. W., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-019-0143-1 (2019).

    CAS  PubMed  Google Scholar 

  221. Rahman, N. Mechanisms predisposing to childhood overgrowth and cancer. Curr. Opin. Genet. Dev. 15, 227–233 (2005).

    CAS  PubMed  Google Scholar 

  222. Akawi, N. et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat. Genet. 47, 1363–1369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Faundes, V. et al. Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am. J. Hum. Genet. 102, 175–187 (2018).

    CAS  PubMed  Google Scholar 

  224. Pilotto, S. et al. LSD1/KDM1A mutations associated to a newly described form of intellectual disability impair demethylase activity and binding to transcription factors. Hum. Mol. Genet. 25, 2578–2587 (2016).

    CAS  PubMed  Google Scholar 

  225. Brookes, E. et al. Mutations in the intellectual disability gene KDM5C reduce protein stability and demethylase activity. Hum. Mol. Genet. 24, 2861–2872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Blanc, R. S., Vogel, G., Chen, T., Crist, C. & Richard, S. PRMT7 preserves satellite cell regenerative capacity. Cell Rep. 14, 1528–1539 (2016).

    CAS  PubMed  Google Scholar 

  227. Bouchard, C. et al. Genomic location of PRMT6-dependent H3R2 methylation is linked to the transcriptional outcome of associated genes. Cell Rep. 24, 3339–3352 (2018).

    CAS  PubMed  Google Scholar 

  228. Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449, 933–937 (2007). Describes antagonism between MLL methyltransferases and PRMT6 in depositing H3K4 and H3R2 methylation, respectively.

    CAS  PubMed  Google Scholar 

  229. Lee, M. G. et al. Functional interplay between histone demethylase and deacetylase enzymes. Mol. Cell. Biol. 26, 6395–6402 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Shi, Y. J. et al. Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19, 857–864 (2005).

    CAS  PubMed  Google Scholar 

  231. Yin, F. et al. LSD1 regulates pluripotency of embryonic stem/carcinoma cells through histone deacetylase 1-mediated deacetylation of histone H4 at lysine 16. Mol. Cell. Biol. 34, 158–179 (2014).

    PubMed  PubMed Central  Google Scholar 

  232. Stein, C., Notzold, R. R., Riedl, S., Bouchard, C. & Bauer, U. M. The arginine methyltransferase PRMT6 cooperates with Polycomb proteins in regulating HOXA gene expression. PLOS ONE 11, e0148892 (2016).

    PubMed  PubMed Central  Google Scholar 

  233. Fei, Q. et al. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res. 25, 1325–1335 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Cao, K. et al. An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. Sci. Adv. 4, eaap8747 (2018).

    PubMed  PubMed Central  Google Scholar 

  235. Cho, Y. W. et al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J. Biol. Chem. 282, 20395–20406 (2007).

    CAS  PubMed  Google Scholar 

  236. Issaeva, I. et al. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol. Cell. Biol. 27, 1889–1903 (2007).

    CAS  PubMed  Google Scholar 

  237. Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007).

    CAS  PubMed  Google Scholar 

  238. Wang, S. P. et al. A UTX-MLL4-p300 transcriptional regulatory network coordinately shapes active enhancer landscapes for eliciting transcription. Mol. Cell 67, 308–321 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Miller, S. A., Mohn, S. E. & Weinmann, A. S. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40, 594–605 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    CAS  PubMed  Google Scholar 

  242. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    CAS  PubMed  Google Scholar 

  243. Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15, 595–605 (2004).

    CAS  PubMed  Google Scholar 

  244. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol. 15, 1176–1183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Murray, K. The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3, 10–15 (1964).

    CAS  PubMed  Google Scholar 

  246. Falnes, P. O., Jakobsson, M. E., Davydova, E., Ho, A. & Malecki, J. Protein lysine methylation by seven-beta-strand methyltransferases. Biochem. J. 473, 1995–2009 (2016).

    CAS  PubMed  Google Scholar 

  247. Larsen, S. C. et al. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci. Signal 9, rs9 (2016).

    PubMed  Google Scholar 

  248. Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).

    CAS  PubMed  Google Scholar 

  249. Kouskouti, A., Scheer, E., Staub, A., Tora, L. & Talianidis, I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol. Cell 14, 175–182 (2004).

    CAS  PubMed  Google Scholar 

  250. Armstrong, J. F., Kaufman, M. H., Harrison, D. J. & Clarke, A. R. High-frequency developmental abnormalities in p53-deficient mice. Curr. Biol. 5, 931–936 (1995).

    CAS  PubMed  Google Scholar 

  251. Kaufman, M. H. et al. Analysis of fused maxillary incisor dentition in p53-deficient exencephalic mice. J. Anat. 191, 57–64 (1997).

    PubMed  PubMed Central  Google Scholar 

  252. Rinon, A. et al. p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes. Development 138, 1827–1838 (2011).

    CAS  PubMed  Google Scholar 

  253. Sah, V. P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nat. Genet. 10, 175–180 (1995).

    CAS  PubMed  Google Scholar 

  254. Saifudeen, Z., Dipp, S. & El-Dahr, S. S. A role for p53 in terminal epithelial cell differentiation. J. Clin. Invest. 109, 1021–1030 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. He, A. et al. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 26, 37–42 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Rasmussen, T. L. et al. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLOS ONE 10, e0121765 (2015).

    PubMed  PubMed Central  Google Scholar 

  257. Pek, J. W., Anand, A. & Kai, T. Tudor domain proteins in development. Development 139, 2255–2266 (2012).

    CAS  PubMed  Google Scholar 

  258. Pengelly, A. R., Copur, O., Jackle, H., Herzig, A. & Muller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).

    CAS  PubMed  Google Scholar 

  259. McKay, D. J. et al. Interrogating the function of metazoan histones using engineered gene clusters. Dev. Cell 32, 373–386 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Vermillion, K. L., Lidberg, K. A. & Gammill, L. S. Cytoplasmic protein methylation is essential for neural crest migration. J. Cell Biol. 204, 95–109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Boisvert, F. M., Chenard, C. A. & Richard, S. Protein interfaces in signaling regulated by arginine methylation. Sci. STKE 2005, re2 (2005).

    PubMed  Google Scholar 

  262. Xu, W. et al. A transcriptional switch mediated by cofactor methylation. Science 294, 2507–2511 (2001).

    CAS  PubMed  Google Scholar 

  263. Shishkova, E. et al. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat. Commun. 8, 15571 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Hu, S. B. et al. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev. 29, 630–645 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Hupalowska, A. et al. CARM1 and paraspeckles regulate pre-implantation mouse embryo development. Cell 175, 1902–1916 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Kim, D. et al. Enzymatic activity is required for the in vivo functions of CARM1. J. Biol. Chem. 285, 1147–1152 (2010).

    CAS  PubMed  Google Scholar 

  267. Nimura, K. et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf–Hirschhorn syndrome. Nature 460, 287–291 (2009).

    CAS  PubMed  Google Scholar 

  268. Kuroki, S. et al. Combined loss of JMJD1A and JMJD1B reveals critical roles for H3K9 demethylation in the maintenance of embryonic stem cells and early embryogenesis. Stem Cell Rep. 10, 1340–1354 (2018).

    CAS  Google Scholar 

  269. Neault, M., Mallette, F. A., Vogel, G., Michaud-Levesque, J. & Richard, S. Ablation of PRMT6 reveals a role as a negative transcriptional regulator of the p53 tumor suppressor. Nucleic Acids Res. 40, 9513–9521 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Yatsenko, S. A. et al. Deletion 9q34.3 syndrome: genotype-phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly. J. Med. Genet. 42, 328–335 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Shi lab is supported by grants from the US National Institutes of Health (RO1 GM117264, RO1 MH096066, R35 CA210104). Y.S. is an American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the discussion of content, wrote the manuscript and edited it before submission. A.J. and A.D. also researched data for the article.

Corresponding authors

Correspondence to Ashwini Jambhekar or Yang Shi.

Ethics declarations

Competing interests

Y.S. is a cofounder of Constellation Pharmaceuticals and Athelas Therapeutics, as well as a consultant for Active Motif, Inc. A.J. and A.D. declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks C. Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Genomic imprinting

Monoallelic expression of a gene specifically from either the maternal or paternal copy.

HOX genes

Genes encoding homeodomain-containing developmental transcription factors that are arranged in linear arrays and expressed in a spatially and temporally regulated manner corresponding to their one-dimensional arrangement along the chromosome.

Chromodomain

Protein domain that binds methylated lysine.

Bromodomain

Protein domain that binds acetylated lysine.

SET domain

Protein domain that typically harbours catalytic methyltransferase activity.

Plant homeodomain (PHD) fingers

Zinc-finger-containing domain involved in recognizing histone modifications.

Tudor domain

Protein domain that recognizes methylated lysines and arginines.

CpG islands

Regions of the genome with elevated frequency of CpG dinucleotide, often occurring in gene regulatory regions and often displaying DNA hypomethylation on cytosine.

Mid-blastula transition

Embryonic stage at which cells in the blastula switch from rapid cycling between S and M phases to lengthened cell cycles including G1 and G2 phases.

Trophectoderm

Cells forming the outer layer of the mammalian embryo that later give rise to the placenta.

Inner cell mass

Cluster of undifferentiated cells in the mammalian embryo that give rise to the fetus.

Poised enhancers

Enhancers that contain H3K4me1 and H3K27me3 marks and are unable to activate gene expression but that remain capable of activation in the future.

Primed enhancers

An enhancer state that is intermediate between poised and active states. Such enhancers are characterized by H3K4me1 marks and DNA hypomethylation but are unable to activate gene expression.

Zygotic gene activation

Activation of transcription from the genome of the embryo, accompanied by clearance of maternal transcripts.

Sex combs

In Drosophila melanogaster, a set of male-specific bristles on the leg.

Position effect variegation

Variation in gene expression levels based on the surrounding genomic context of the gene.

Neural crest cells

Embryonic cells that arise from the ectoderm and give rise to multiple tissues, including craniofacial structures and peripheral nerves.

Sub-ventricular zone

Region of the brain lining the ventricles that generates neural and glial precursors.

Medulloblastoma

Paediatric brain tumour, believed to originate from primitive (undifferentiated) neuro-ectodermal cells, that most commonly arises in the cerebellum during the first decade of life and accounts for approximately 10% of primary brain tumours in children.

Alu elements

Short stretches of DNA containing the AluI restriction site that are repeated millions of times throughout the human genome.

Embryoid bodies

Aggregates of pluripotent cells that contain cells differentiating towards each of the three germ layers.

Microcephaly

Reduced head circumference.

Protocadherins

Family of cell adhesion proteins important for the development of neurons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jambhekar, A., Dhall, A. & Shi, Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 20, 625–641 (2019). https://doi.org/10.1038/s41580-019-0151-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0151-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing