Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of microRNA function in animals

Abstract

Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex networks that regulate cell differentiation, development and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of the control of miRNA function. Here, we review the mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA–target interactions. We conclude by discussing intriguing, unresolved research questions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of miRNA function and its regulation.
Fig. 2: Isomirs differ in length and sequence and expand the functional repertoire of miRNAs.
Fig. 3: Non-templated nucleotide addition and miRNA turnover.
Fig. 4: The activity and the stability of miRNA-induced silencing complex is modulated by post-translational modifications of Argonaute proteins.
Fig. 5: miRNA sequestration by endogenous and viral RNAs.
Fig. 6: Mechanisms of sorting miRNAs into exosomes.

Similar content being viewed by others

References

  1. Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Chong, M. M. W. et al. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 24, 1951–1960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pauli, A., Rinn, J. L. & Schier, A. F. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet. 12, 136–149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burger, K. & Gullerova, M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat. Rev. Mol. Cell Biol. 16, 417–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Friedman, R. C., Farh, K. K.-H., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, S. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321–333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bracken, C. P., Scott, H. S. & Goodall, G. J. A network-biology perspective of microRNA function and dysfunction in cancer. Nat. Rev. Genet. 17, 719–732 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17~92 family of miRNA clusters. Cell 132, 875–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nat. Cell Biol. 435, 834–838 (2005).

    CAS  Google Scholar 

  21. Schwarzenbach, H., Nishida, N., Calin, G. A. & Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 11, 145–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Y., Goodison, S., Li, X. & Hu, H. Prognostic cancer gene signatures share common regulatory motifs. Sci. Rep. 7, 1183 (2017).

    Article  CAS  Google Scholar 

  23. Rupaimoole, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–221 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Llave, C., Kasschau, K. D., Rector, M. A. & Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mukherjee, K., Campos, H. & Kolaczkowski, B. Evolution of animal and plant Dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol. Biol. Evol. 30, 627–641 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl Acad. Sci. USA 101, 12753–12758 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Rogers, K. & Chen, X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25, 2383–2399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727–741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bracht, J., Hunter, S., Eachus, R., Weeks, P. & Pasquinelli, A. E. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 10, 1586–1594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 12, 846–860 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Lim, L. P. The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakanishi, K., Weinberg, D. E., Bartel, D. P. & Patel, D. J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheu-Gruttadauria, J. & MacRae, I. J. Structural foundations of RNA silencing by Argonaute. J. Mol. Biol. 429, 2619–2639 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diederichs, S. & Haber, D. A. Dual role for argonautes in MicroRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Cheloufi, S., Santos, dos, C. O., Chong, M. M. W. & Hannon, G. J. A. Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yekta, S., Shih, I.-H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Karginov, F. V. et al. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell 38, 781–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Burroughs, A. M. et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 8, 158–177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dueck, A., Ziegler, C., Eichner, A., Berezikov, E. & Meister, G. microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res. 40, 9850–9862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, D. et al. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev. 26, 693–704 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).

    Article  PubMed Central  Google Scholar 

  55. Wong, N. & Wang, X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43, D146–152 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Schirle, N. T., Sheu-Gruttadauria, J. & MacRae, I. J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schirle, N. T., Sheu-Gruttadauria, J., Chandradoss, S. D., Joo, C. & MacRae, I. J. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. eLife 4, e07646 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  58. Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J. & Joo, C. A. Dynamic search process underlies microRNA targeting. Cell 162, 96–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salomon, W. E., Jolly, S. M., Moore, M. J., Zamore, P. D. & Serebrov, V. Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klum, S. M., Chandradoss, S. D., Schirle, N. T., Joo, C. & MacRae, I. J. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J. 37, 75–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grosswendt, S. et al. Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol. Cell 54, 1042–1054 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moore, M. J. et al. miRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 6, 8864 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, D. et al. General rules for functional microRNA targeting. Nat. Genet. 48, 1517–1526 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Grimson, A. et al. MicroRNA Targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W. & Pasquinelli, A. E. Pairing beyond the seed supports microRNA targeting specificity. Mol. Cell 64, 320–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the Argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell 19, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261–1266 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Meister, G. et al. Identification of novel Argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Braun, J. E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, C.-Y. A., Zheng, D., Xia, Z. & Shyu, A.-B. Ago–TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat. Struct. Mol. Biol. 16, 1160–1166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Behm-Ansmant, I. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Fabian, M. R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat. Struct. Mol. Biol. 18, 1211–1217 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Braun, J. E. et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat. Struct. Mol. Biol. 19, 1324–1331 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Mathys, H. et al. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol. Cell 54, 751–765 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Meijer, H. A. et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340, 82–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Fukaya, T., Iwakawa, H.-O. & Tomari, Y. MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila. Mol. Cell 56, 67–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Fukao, A. et al. microRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans. Mol. Cell 56, 79–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Elkayam, E. et al. Multivalent recruitment of human Argonaute by GW182. Mol. Cell 67, 646–658.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuzuoglu-Öztürk, D. et al. miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning. EMBO J. 35, 1186–1203 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Eichhorn, S. W. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104–115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Uhlmann, S. et al. Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol. Systems Biol. 8, 1–15 (2012).

    Article  CAS  Google Scholar 

  88. Mestdagh, P. et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol. Cell 40, 762–773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Saetrom, P. et al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res. 35, 2333–2342 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Broderick, J. A., Salomon, W. E., Ryder, S. P., Aronin, N. & Zamore, P. D. Argonaute protein identity and pairing geometry determine cooperativity in mammalian. RNA silencing. RNA 17, 1858–1869 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Flamand, M. N., Gan, H. H., Mayya, V. K., Gunsalus, K. C. & Duchaine, T. F. A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing. Nucleic Acids Res. 45, 7212–7225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tsang, J., Zhu, J. & van Oudenaarden, A. microRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753–767 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Morin, R. D. et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18, 610–621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tan, G. C. et al. 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Res. 42, 9424–9435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, B., Jeong, K. & Kim, V. N. Genome-wide mapping of DROSHA cleavage sites on primary microRNAs and noncanonical substrates. Mol. Cell 66, 258–269.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Neilsen, C. T., Goodall, G. J. & Bracken, C. P. IsomiRs – the overlooked repertoire in the dynamic microRNAome. Trends Genet. 28, 544–549 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Nishikura, K. A-To-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17, 83–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Telonis, A. G., Loher, P., Jing, Y., Londin, E. & Rigoutsos, I. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 43, 9158–9175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Telonis, A. G. et al. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 45, 2973–2985 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu, H., Ye, C., Ramirez, D. & Manjunath, N. Alternative processing of primary microRNA transcripts by Drosha generates 5′ end variation of mature microRNA. PLoS ONE 4, e7566 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Lee, H. Y. & Doudna, J. A. TRBP alters human precursor microRNA processing in vitro. RNA 18, 2012–2019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fukunaga, R. et al. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151, 533–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, H. Y., Zhou, K., Smith, A. M., Noland, C. L. & Doudna, J. A. Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res. 41, 6568–6576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim, Y. et al. Deletion of human tarbp2 reveals cellular microRNA targets and cell-cycle function of TRBP. Cell Rep. 9, 1061–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Wilson, R. C. et al. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol. Cell 57, 397–407 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Llorens, F. et al. A highly expressed miR-101 isomiR is a functional silencing small RNA. BMC Genomics 14, 104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Manzano, M., Forte, E., Raja, A. N., Schipma, M. J. & Gottwein, E. Divergent target recognition by coexpressed 5′-isomiRs of miR-142-3p and selective viral mimicry. RNA 21, 1606–1620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Karali, M. et al. High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Res. 44, 1525–1540 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mercey, O. et al. Characterizing isomiR variants within the microRNA-34/449 family. FEBS Lett. 591, 693–705 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cloonan, N. et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 12, R126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yamane, D. et al. Differential hepatitis C virus RNA target site selection and host factor activities of naturally occurring miR-122 3′ variants. Nucleic Acids Res. 45, 4743–4755 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu, F. et al. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res. 45, 11371–11385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergentin function. Trends Biochem. Sci. 41, 578–594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Blow, M. J. et al. RNA editing of human microRNAs. Genome Biol. 7, R27 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kawahara, Y. et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 36, 5270–5280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 13, 13–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Chawla, G. & Sokol, N. S. ADAR mediates differential expression of polycistronic microRNAs. Nucleic Acids Res. 42, 5245–5255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vesely, C. et al. ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain. Nucleic Acids Res. 42, 12155–12168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shoshan, E. et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat. Cell Biol. 17, 311–321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kawahara, Y., Zinshteyn, B., Chendrimada, T. P., Shiekhattar, R. & Nishikura, K. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep. 8, 763–769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nigita, G. et al. microRNA editing in seed region aligns with cellular changes in hypoxic conditions. Nucleic Acids Res. 44, 6298–6308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vitsios, D. M., Davis, M. P., van Dongen, S. & Enright, A. J. Large-scale analysis of microRNA expression, epi-transcriptomic features and biogenesis. Nucleic Acids Res. 45, 1079–1090 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  126. Paul, D. et al. A-To-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci. Rep. 7, D195 (2017).

    Article  CAS  Google Scholar 

  127. Tomaselli, S. et al. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol. 16, 5 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Wang, Y. et al. Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res. 27, 1112–1125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Negi, V. et al. Altered expression and editing of miRNA-100 regulates iTreg differentiation. Nucleic Acids Res. 43, 8057–8065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Luciano, D. J., Mirsky, H., Vendetti, N. J. & Maas, S. RNA editing of a miRNA precursor. RNA 10, 1174–1177 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fernandez-Valverde, S. L., Taft, R. J. & Mattick, J. S. Dynamic isomiR regulation in Drosophila development. RNA 16, 1881–1888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wyman, S. K. et al. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 21, 1450–1461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 23, 433–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Burns, D. M., D’Ambrogio, A., Nottrott, S. & Richter, J. D. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Katoh, T., Hojo, H. & Suzuki, T. Destabilization of microRNAs in human cells by 3′ deadenylation mediated by PARN and CUGBP1. Nucleic Acids Res. 43, 7521–7534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mansur, F. et al. Gld2-catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. RNA 22, 1492–1499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. D’Ambrogio, A., Gu, W., Udagawa, T., Mello, C. C. & Richter, J. D. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep. 2, 1537–1545 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Boele, J. et al. PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc. Natl Acad. Sci. USA 111, 11467–11472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jones, M. R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat. Cell Biol. 11, 1157–1163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gutiérrez-Vázquez, C. et al. 3′ Uridylation controls mature microRNA turnover during CD4 T cell activation. RNA 23, 882–891 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Burroughs, A. M. et al. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res. 20, 1398–1410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rüegger, S. & Großhans, H. microRNA turnover: when, how, and why. Trends Biochem. Sci. 37, 436–446 (2012).

    Article  PubMed  CAS  Google Scholar 

  143. Guo, Y. et al. Characterization of the mammalian miRNA turnover landscape. Nucleic Acids Res. 43, 2326–2341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marzi, M. J. et al. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res. 26, 554–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rissland, O. S., Hong, S.-J. & Bartel, D. P. microRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. Mol. Cell 43, 993–1004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Monticelli, S. et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 6, R71 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Krol, J. et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141, 618–631 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. la Mata, de, M. et al. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. 16, 500–511 (2015).

    Article  CAS  Google Scholar 

  150. Park, J. H., Shin, S.-Y. & Shin, C. Non-canonical targets destabilize microRNAs in human Argonautes. Nucleic Acids Res. 45, 1569–1583 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Haas, G. et al. Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res. 44, 2873–2887 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A. Network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362.e17 (2018).

  153. Bitetti, A. et al. microRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 25, 244–251 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. De, N. et al. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. Mol. Cell 50, 344–355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pitchiaya, S., Heinicke, L. A., Park, J. I., Cameron, E. L. & Walter, N. G. Resolving subcellular miRNA trafficking and turnover at single-molecule resolution. Cell Rep. 19, 630–642 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Elbarbary, R. A. et al. Tudor-SN-mediated endonucleolytic decay of human cell microRNAs promotes G1/S phase transition. Science 356, 859–862 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Salzman, D. W. et al. miR-34 activity is modulated through 5′-end phosphorylation in response to DNA damage. Nat. Commun. 7, 10954 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zeng, Y., Sankala, H., Zhang, X. & Graves, P. R. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem. J. 413, 429–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Horman, S. R. et al. Akt-mediated phosphorylation of Argonaute 2 downregulates cleavage and upregulates translational repression of microRNA targets. Mol. Cell 50, 356–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rüdel, S. et al. Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. 39, 2330–2343 (2011).

    Article  PubMed  CAS  Google Scholar 

  161. Bridge, K. S. et al. Argonaute utilization for miRNA silencing is determined by phosphorylation-dependent recruitment of LIM-domain-containing proteins. Cell Rep. 20, 173–187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. McKenzie, A. J. et al. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15, 978–987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lopez-Orozco, J. et al. Functional analyses of phosphorylation events in human Argonaute 2. RNA 21, 2030–2038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shen, J. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497, 383–387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yang, M. et al. Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence. Mol. Cell 55, 782–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ma, J.-B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434, 663–666 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mazumder, A., Bose, M., Chakraborty, A., Chakrabarti, S. & Bhattacharyya, S. N. A transient reversal of miRNA-mediated repression controls macrophage activation. EMBO Rep. 14, 1008–1016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Quévillon Huberdeau, M. et al. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J. 36, 2088–2106 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Golden, R. J. et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542, 197–202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Qi, H. H. et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455, 421–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Leung, A., Todorova, T., Ando, Y. & Chang, P. Poly(ADP-ribose) regulates post-transcriptional gene regulation in the cytoplasm. RNA Biol. 9, 542–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Leung, A. K. L. et al. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42, 489–499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Seo, G. J. et al. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 14, 435–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Smibert, P., Yang, J.-S., Azzam, G., Liu, J.-L. & Lai, E. C. Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bronevetsky, Y. et al. T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. J. Exp. Med. 210, 417–432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sahin, U., Lapaquette, P., Andrieux, A., Faure, G. & Dejean, A. Sumoylation of human Argonaute 2 at lysine-402 regulates its stability. PLoS ONE 9, e102957 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Josa-Prado, F., Henley, J. M. & Wilkinson, K. A. SUMOylation of Argonaute-2 regulates RNA interference activity. Biochem. Biophys. Res. Commun. 464, 1066–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, S. et al. TRIM65 regulates microRNA activity by ubiquitination of TNRC6. Proc. Natl Acad. Sci. USA 111, 6970–6975 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Eystathioy, T. et al. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 13, 1338–1351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Huang, K. L., Chadee, A. B., Chen, C. Y. A., Zhang, Y. & Shyu, A. B. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. RNA 19, 295–305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Suzawa, M. et al. Comprehensive identification of nuclear and cytoplasmic TNRC6A-associating proteins. J. Mol. Biol. 429, 3319–3333 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Poliseno, L. et al. A coding-independent function of geneand pseudogene mRNAs regulatestumour biology. Nature 465, 1033–1038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A. ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Jens, M. & Rajewsky, N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet. 16, 113–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Denzler, R. et al. Impact of MicroRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol. Cell 64, 565–579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Karreth, F. A. et al. The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell 161, 319–332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Karreth, F. A. et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sumazin, P. et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Barrett, S. P. & Salzman, J. Circular RNAs: analysis, expression and potential functions. Development 143, 1838–1847 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  CAS  Google Scholar 

  200. Guo, J. U., Agarwal, V., Guo, H. & Bartel, D. P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 101 (2014).

    Article  CAS  Google Scholar 

  201. Webster, D. P., Klenerman, P. & Dusheiko, G. M. Hepatitis C. Lancet 385, 1124–1135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Otto, G. A. & Puglisi, J. D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  203. Jopling, C. L., Schütz, S. & Sarnow, P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4, 77–85 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Shimakami, T. et al. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc. Natl Acad. Sci. USA 109, 941–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sedano, C. D. & Sarnow, P. Hepatitis C virus subverts liver-specific miR-122 to protect the viral genome from exoribonuclease Xrn2. Cell Host Microbe 16, 257–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Amador-Cañizares, Y., Bernier, A., Wilson, J. A. & Sagan, S. M. miR-122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5′ end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Res. 46, 5139–5158 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Luna, J. M. et al. Hepatitis C virus RNA functionally sequesters miR-122. Cell 160, 1099–1110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Scheel, T. K. H. et al. A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host Microbe 19, 409–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bandiera, S., Pfeffer, S., Baumert, T. F. & Zeisel, M. B. miR-122 — a key factor and therapeutic target in liver disease. J. Hepatol. 62, 448–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Lau, C.-C. et al. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell 25, 335–349 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Liang, H.-W. et al. Hepatitis B virus-human chimeric transcript HBx-LINE1 promotes hepatic injury via sequestering cellular microRNA-122. J. Hepatol. 64, 278–291 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Cazalla, D., Yario, T., Steitz, J. A. & Steitz, J. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Marcinowski, L. et al. Degradation of cellular miR-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 8, e1002510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Gorbea, C., Mosbruger, T. & Cazalla, D. A viral Sm-class RNA base-pairs with mRNAs and recruits microRNAs to inhibit apoptosis. Nature 550, 275–279 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Buck, A. H. et al. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16, 307–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Libri, V. et al. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc. Natl Acad. Sci. USA 109, 279–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Lee, S. et al. Selective degradation of host microRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 13, 678–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  218. Leung, A. K. L. The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol. 25, 601–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hwang, H.-W., Wentzel, E. A. & Mendell, J. T. A. Hexanucleotide element directs microrna nuclear import. Science 315, 97–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  220. Zisoulis, D. G., Kai, Z. S., Chang, R. K. & Pasquinelli, A. E. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486, 541–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  223. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223–7233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gallo, A., Tandon, M., Alevizos, I. & Illei, G. G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 7, e30679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Melo, S. A. et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26, 707–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Fong, M. Y. et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 17, 183–194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Tkach, M. & Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Chevillet, J. R. et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl Acad. Sci. USA 111, 14888–14893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ahadi, A., Brennan, S., Kennedy, P. J., Hutvágner, G. & Tran, N. Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes. Sci. Rep. 6, 24922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 1–10 (2013).

    Article  CAS  Google Scholar 

  234. Santangelo, L. et al. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 17, 799–808 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S. & Schekman, R. Y-Box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5, e19276 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Teng, Y. et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat. Commun. 8, 14448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Koppers-Lalic, D. et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8, 1649–1658 (2014).

    Article  CAS  PubMed  Google Scholar 

  238. Zhang, L., Yang, C.-S., Varelas, X. & Monti, S. Altered RNA editing in 3′ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors. Sci. Rep. 6, 23226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Nakano, M., Fukami, T., Gotoh, S. & Nakajima, M. A-to-I RNA editing up-regulates human dihydrofolate reductase in breast cancer. J. Biol. Chem. 292, 4873–4884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Nam, J.-W. et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 53, 1031–1043 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020 (2010).

    Article  CAS  PubMed  Google Scholar 

  242. Min, K.-W. et al. AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res. 45, 6064–6073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ahuja, D., Goyal, A. & Ray, P. S. Interplay between RNA-binding protein HuR and microRNA-125b regulates p53 mRNA translation in response to genotoxic stress. RNA Biol. 13, 1152–1165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Poria, D. K., Guha, A., Nandi, I. & Ray, P. S. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4. Oncogene 35, 1703–1715 (2016).

    Article  CAS  PubMed  Google Scholar 

  246. La Rocca, G. et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proc. Natl Acad. Sci. USA 112, 767–772 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  247. Ameres, S. L., Martinez, J. & Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  248. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  249. Zheng, Z. et al. Target RNA secondary structure is a major determinant of miR159 efficacy. Plant Physiol. 174, 1764–1778 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sheu-Gruttadauria, J. & MacRae, I. J. Phase transitions in the assembly and function of human miRISC. Cell 173, 946–957.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  253. Denli, A. M., Tops, B. B. J., Plasterk, R. H. A., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  254. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  255. Nguyen, T. A. et al. Functional anatomy of the human Microprocessor. Cell 161, 1374–1387 (2015).

    Article  CAS  PubMed  Google Scholar 

  256. Kwon, S. C. et al. Structure of human DROSHA. Cell 164, 81–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  257. Nicholson, A. W. Ribonuclease III mechanisms of double-stranded RNA cleavage. WIREs RNA 5, 31–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  258. Okada, C. et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326, 1275–1279 (2009).

    Article  CAS  PubMed  Google Scholar 

  259. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  260. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  261. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  262. Kim, Y.-K., Kim, B. & Kim, V. N. Re-evaluation of the roles of DROSHA, Exportin 5, and DICERin microRNA biogenesis. Proc. Natl Acad. Sci. USA 113, E1881–E1889 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. MacRae, I. J., Zhou, K. & Doudna, J. A. Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14, 934–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  264. Park, J.-E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Tsutsumi, A., Kawamata, T., Izumi, N., Seitz, H. & Tomari, Y. Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat. Struct. Mol. Biol. 18, 1153–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  266. Tian, Y. et al. A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol. Cell 53, 606–616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. MacRae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  268. Lau, P.-W. et al. The molecular architecture of human Dicer. Nat. Struct. Mol. Biol. 19, 436–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  270. Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute 2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  271. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  272. Leuschner, P. J. F., Ameres, S. L., Kueng, S. & Martinez, J. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. EMBO Rep. 101, 314–320 (2006).

    Article  CAS  Google Scholar 

  273. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  274. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  275. Suzuki, H. I. et al. Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat. Struct. Mol. Biol. 22, 512–521 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5. Nature 465, 818–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  277. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

L.F.R.G. is supported by an Advanced Postdoc Mobility fellowship from the Swiss National Science Foundation, project number P300PA_177860. I.J.M. is supported by US National Institutes of Health grants R01-GM104475 and R01-GM115649.

Reviewer information

Nature Reviews Molecular Cell Biology thanks A. Pasquinelli and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching, discussing, writing and revising the article.

Corresponding author

Correspondence to Ian J. MacRae.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

miRBase: https://www.mirbase.org

Supplementary information

Glossary

Isomirs

Variant forms of a canonical miRNA, generated by alternative cleavage during biogenesis, RNA editing or non-templated nucleotide addition.

Guide strand

The strand in the mature miRNA duplex that is loaded into an Argonaute protein and used to identify complementary sites in target mRNAs.

Metastable

A stable state in a system that is not the state of least energy.

mRNA decay

Controlled mRNA degradation, usually starting with deadenylation, through either 3′–5′ exonucleolytic processing or decapping and 5′–3′ exonucleolytic processing.

Trp-binding pockets

AGO possesses three pockets located in the PIWI domain, which bind tryptophan and mediate the interaction with GW182.

miRNA clusters

Multiple miRNAs located in close proximity on the genome and transcribed as a single primary miRNA.

Multivalent protein interactions

Protein–protein interactions mediated by multiple, often fairly weak binding events or points of contact.

Seedless targets

miRNA targets with considerably reduced complementarity to the miRNA seed.

Multivesicular endosomes

Type of late endosome that contains intraluminal vesicles formed by budding into the lumen of the endosome. Their content can be degraded by fusion with lysosomes or released into the extracellular space through fusion with the cell membrane.

Exosomes

Type of extracellular vesicle, ~50–150 nm in diameter, that contains proteins, lipids and RNA and can carry cargo to target cells.

Stress granules

Following global translation shutdown during the cellular stress response, cytoplasmic granules form, which are composed of non-translating mRNAs, translation initiation factors and regulatory proteins.

PAM2 motif

Poly(A) binding protein interacting motif 2 mediates the interaction between GW182 and PABP.

miRNA sponges

Transcripts that contain multiple target sites for a specific miRNA and bind miRNAs, thereby derepressing the miRNA target mRNAs.

Small nuclear RNAs

Small non-coding RNAs in the nucleus that form complexes with proteins and are part of the splicing machinery.

Circulating miRNAs

miRNAs present in circulation and found either as AGO–miRNA complexes or as cargo of vesicles (exosomes).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebert, L.F.R., MacRae, I.J. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20, 21–37 (2019). https://doi.org/10.1038/s41580-018-0045-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0045-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing