Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inter-tissue communication in cancer cachexia

Abstract

Cachexia is a systemic condition that occurs during many neoplastic diseases, such as cancer. Cachexia in cancer is characterized by loss of body weight and muscle and by adipose tissue wasting and systemic inflammation. Cancer cachexia is often associated with anorexia and increased energy expenditure. Even though the cachectic condition severely affects skeletal muscle, a tissue that accounts for ~40% of total body weight, it represents a multi-organ syndrome that involves tissues and organs such as white adipose tissue, brown adipose tissue, bone, brain, liver, gut and heart. Indeed, evidence suggests that non-muscle tissues and organs, as well as tumour tissues, secrete soluble factors that act on skeletal muscle to promote wasting. In addition, muscle tissue also releases various factors that can interact with the metabolism of other tissues during cancer. In this Review, we examine the effect of non-muscle tissues and inter-tissue communication in cancer cachexia and discuss studies aimed at developing novel therapeutic strategies for the condition.

Key points

  • Cancer cachexia is an energy-wasting syndrome caused by decreased food intake (owing to marked anorexia) and increased energy expenditure.

  • Cancer cachexia affects many tissues, including adipose tissues, heart, bone, liver, gastrointestinal tract and brain.

  • Systemic inflammation is a hallmark of patients with cancer, and the inflammatory response is involved in the metabolic alterations present during cancer cachexia.

  • The balance between pro-cachectic cytokines and anti-cachectic cytokines, both of which are produced by many cell types, might actually determine the cachectic response.

  • The importance of the metabolic changes that occurr in white and brown adipose tissues during cancer cachexia have been underestimated.

  • We need to unravel the communication between skeletal muscle and other tissues to better understand the aetiology of cancer cachexia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The multi-organ nature of cancer cachexia.
Fig. 2: Inter-organ communication influences metabolic homeostasis in cancer cachexia.

Similar content being viewed by others

References

  1. Evans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008).

    CAS  PubMed  Google Scholar 

  2. Argilés, J. M., Busquets, S., Stemmler, B. & López-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14, 754–762 (2014).

    PubMed  Google Scholar 

  3. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    PubMed  Google Scholar 

  4. Stewart, G. D., Skipworth, R. J. & Fearon, K. C. Cancer cachexia and fatigue. Clin. Med. 6, 140–143 (2006).

    Google Scholar 

  5. Warren, S. The immediate cause of death in cancer. Am. J. Med. Sci. 184, 610–613 (1932).

    Google Scholar 

  6. Coletti, D. Chemotherapy-induced muscle wasting: an update. Eur. J. Transl Myol. 28, 7587 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Dewys, W. D. et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am. J. Med. 69, 491–497 (1980).

    CAS  PubMed  Google Scholar 

  8. Arthur, S. T. et al. Cachexia among US cancer patients. J. Med. Econ. 19, 874–880 (2016).

    PubMed  Google Scholar 

  9. Argilés, J. M. The 2015 ESPEN Sir David Cuthbertson lecture: Inflammation as the driving force of muscle wasting in cancer. Clin. Nutr. 36, 798–803 (2016).

    PubMed  Google Scholar 

  10. Argilés, J. M., López-Soriano, F. J. & Busquets, S. Counteracting inflammation: a promising therapy in cachexia. Crit. Rev. Oncog. 17, 253–262 (2012).

    PubMed  Google Scholar 

  11. Bonetto, A. et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am. J. Physiol. Endocrinol. Metab. 303, E410–E421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Camargo, R. G. et al. NF-κBp65 and expression of its pro-inflammatory target genes are upregulated in the subcutaneous adipose tissue of cachectic cancer patients. Nutrients 7, 4465–4479 (2015).

    CAS  PubMed  Google Scholar 

  13. Waning, D. L. & Guise, T. A. Molecular Mechanisms of Bone Metastasis and Associated Muscle Weakness. Clin. Cancer Res. 20, 3071–3077 (2014)

  14. Tisdale, M. J. Are tumoral factors responsible for host tissue wasting in cancer cachexia? Future Oncol. 6, 503–513 (2010).

    CAS  PubMed  Google Scholar 

  15. Bing, C., Mracek, T., Gao, D. & Trayhurn, P. Zinc-2-glycoprotein: an adipokine modulator of body fat mass? Int. J. Obes. 34, 1559–1965 (2010).

    CAS  Google Scholar 

  16. Argilés, J. M., Orpí, M., Busquets, S. & López-Soriano, F. J. Myostatin: more than just a regulator of muscle mass. Drug Discov. Today. 17, 702–709 (2012).

    PubMed  Google Scholar 

  17. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    CAS  PubMed  Google Scholar 

  18. Bossola, M., Marzetti, E., Rosa, F. & Pacelli, F. Skeletal muscle regeneration in cancer cachexia. Clin. Exp. Pharmacol. Physiol. 43, 522–527 (2016).

    CAS  PubMed  Google Scholar 

  19. Sandri, M. Protein breakdown in cancer cachexia. Semin. Cell Dev. Biol. 54, 11–19 (2016).

    CAS  PubMed  Google Scholar 

  20. Cohen, S., Zhai, B., Gygi, S. P. & Goldberg, A. L. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J. Cell Biol. 198, 575–589 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Costelli, P. et al. Ca2+-dependent proteolysis in muscle wasting. Int. J. Biochem. Cell Biol. 37, 2134–2146 (2005).

    CAS  PubMed  Google Scholar 

  22. Jain, S., Gautam, V. & Naseem, S. Acute-phase proteins: as diagnostic tool. J. Pharm. Bioallied Sci. 3, 118–127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Andersson, C., Gelin, J., Iresjö, B. M. & Lundholm, K. Acute-phase proteins in response to tumor growth. J. Surg. Res. 55, 607–614 (1993).

    CAS  PubMed  Google Scholar 

  24. Richards, C. H. et al. The relationships between body composition and the systemic inflammatory response in patients with primary operable colorectal cancer. PLOS ONE 7, e41883 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Roxburgh, C. S. & McMillan, D. C. Role of systemic inflammatory response in predicting survival in patients with primary operable cancer. Futur. Oncol. 6, 149–163 (2010).

    CAS  Google Scholar 

  26. Proctor, M. J. et al. An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: a Glasgow Inflammation Outcome Study. Br. J. Cancer 104, 726–734 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Simmons, C. P. L. et al. Prognostic tools in patients with advanced cancer: a systematic review. J. Pain Symptom Manage. 53, 962–970.e10 (2017).

    PubMed  Google Scholar 

  28. Zhang, L. et al. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J. Am. Soc. Nephrol. 20, 604–612 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Argilés, J. M., Alvarez, B. & López-Soriano, F. J. The metabolic basis of cancer cachexia. Med. Res. Rev. 17, 477–498 (1997).

    PubMed  Google Scholar 

  30. Prokopchuk, O. et al. IL-4 mRNA is downregulated in the liver of pancreatic cancer patients suffering from cachexia. Nutr. Cancer 69, 84–91 (2017).

    CAS  PubMed  Google Scholar 

  31. Peyta, L. et al. Regulation of hepatic cardiolipin metabolism by TNF-α: implication in cancer cachexia. Biochim. Biophys. Acta 1851, 1490–1500 (2015).

    CAS  PubMed  Google Scholar 

  32. Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 75, 90 (2017).

    Google Scholar 

  33. Di Gregorio, G. B. et al. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 54, 2305–2313 (2005).

    PubMed  Google Scholar 

  34. Martignoni, M. E. et al. Liver macrophages contribute to pancreatic cancer-related cachexia. Oncol. Rep. 21, 363–369 (2009).

    PubMed  Google Scholar 

  35. Klein, G. L., Petschow, B. W., Shaw, A. L. & Weaver, E. Gut barrier dysfunction and microbial translocation in cancer cachexia: a new therapeutic target. Curr. Opin. Support Palliat. Care 7, 361–367 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Puppa, M. J. et al. Gut barrier dysfunction in the Apc(Min/+) mouse model of colon cancer cachexia. Biochim. Biophys. Acta 1812, 1601–1606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kufe, D. W. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer 9, 874–885 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuura, M. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity. Front. Immunol. 4, 109 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Soler, A. P. et al. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20, 1425–1431 (1999).

    CAS  PubMed  Google Scholar 

  40. Ohtani, S. et al. Expression of tight-junction-associated proteins in human gastric cancer: downregulation of claudin-4 correlates with tumor aggressiveness and survival. Gastr. Cancer 12, 43–51 (2009).

    CAS  Google Scholar 

  41. Bindels, L. B. et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLOS ONE 7, e37971 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bindels, L. B. et al. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J. 10, 1456–1470 (2016).

    CAS  PubMed  Google Scholar 

  43. Bindels, L. B. & Delzenne, N. M. Muscle wasting: the gut microbiota as a new therapeutic target? Int. J. Biochem. Cell Biol. 45, 2186–2190 (2013).

    CAS  PubMed  Google Scholar 

  44. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    CAS  PubMed  Google Scholar 

  45. Manasa, S. et al. Role of the normal gut microbiota. World J. Gastroenterol. 21, 8787–8803 (2015).

    Google Scholar 

  46. Sakuma, K., Aoi, W. & Yamaguchi, A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflügers Arch. 469, 573–591 (2017).

    CAS  PubMed  Google Scholar 

  47. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. Delzenne, N. M., Neyrinck, A. M., Bäckhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646 (2011).

    CAS  PubMed  Google Scholar 

  49. Sandri, M. et al. PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc. Natl Acad. Sci. USA 103, 16260–16265 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    CAS  PubMed  Google Scholar 

  51. Castañeda, T. R., Tong, J., Datta, R., Culler, M. & Tschöp, M. H. Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocr. 31, 44–60 (2010).

    Google Scholar 

  52. Sousa-Ferreira, L. et al. Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and Orexin-A and differentiate to functional neurons. PLOS ONE 6, e19745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Choi, K. et al. The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 144, 754–759 (2003).

    CAS  PubMed  Google Scholar 

  54. Mano-Otagiri, A. et al. Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regul. Pept. 160, 81–90 (2010).

    CAS  PubMed  Google Scholar 

  55. Granado, M., Martin, A. I., Villanua, M. A. & Lopez-Calderon, A. Experimental arthritis inhibits the insulin-like growth factor-I axis and induces muscle wasting through cyclooxygenase-2 activation. Am. J. Physiol. Endocrinol. Metab. 292, 1656–1665 (2007).

    Google Scholar 

  56. Zeng, X., Chen, S., Yang, Y. & Ke, Z. Acylated and unacylated ghrelin inhibit atrophy in myotubes co-cultured with colon carcinoma cells. Oncotarget 8, 72872–72885 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Zeng, X., Chen, S., Lin, Y. & Ke, Z. Acylated and unacylated ghrelin inhibit apoptosis in myoblasts cocultured with colon carcinoma cells. Oncol. Rep. 39, 1387–1395 (2018).

    CAS  PubMed  Google Scholar 

  58. Wang, H. S., Oh, D. S., Ohning, G. V. & Pisegna, J. R. Elevated serum ghrelin exerts an orexigenic effect that may maintain body mass index in patients with metastatic neuroendocrine tumors. J. Mol. Neurosci. 33, 225–231 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kerem, M. et al. Adipokines and ghrelin in gastric cancer cachexia. World J. Gastroenterol. 14, 3633–3641 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Takahashi, M. et al. Ghrelin and leptin levels in cachectic patients with cancer of the digestive organs. Int. J. Clin. Oncol. 14, 315–320 (2009).

    CAS  PubMed  Google Scholar 

  61. Karapanagiotou, E. M. et al. Increased serum levels of ghrelin at diagnosis mediate body weight loss in non-small cell lung cancer (NSCLC) patients. Lung Cancer 66, 393–398 (2009).

    PubMed  Google Scholar 

  62. Terawaki, K. et al. Development of ghrelin resistance in a cancer cachexia rat model using human gastric cancer-derived 85As2 cells and the palliative effects of the Kampo medicine rikkunshito on the model. PLOS ONE 12, e0173113 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Harmatz, E. S. et al. Central ghrelin resistance permits the overconsolidation of fear memory. Biol. Psychiatry. 81, 1003–1013 (2017).

    CAS  PubMed  Google Scholar 

  64. Katakami, N. et al. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer 124, 606–616 (2018).

    CAS  PubMed  Google Scholar 

  65. Bai, Y. et al. Anamorelin for cancer anorexia-cachexia syndrome: a systematic review and meta-analysis. Support. Care Cancer 25, 1651–1659 (2017).

    PubMed  Google Scholar 

  66. Graf, S. A. & Garcia, J. M. Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia syndrome: design, development, and potential place in therapy. Drug Des. Devel. Ther. 11, 2325–2331 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Majchrzak, K., Szyszko, K., Pawłowski, K. M., Motyl, T. & Król, M. A role of ghrelin in cancerogenesis. Pol. J. Vet. Sci. 15, 189–197 (2012).

    CAS  PubMed  Google Scholar 

  68. Costa, J. L. et al. Ghrelin is an osteoblast mitogen and increases osteoclastic bone resorption in vitro. Int. J. Pept. 2011, 605193 (2011).

    PubMed  PubMed Central  Google Scholar 

  69. Giralt, M., Cereijo, R. & Villarroya, F. Adipokines and the endocrine role of adipose tissues. Handb. Exp. Pharmacol. 233, 265–282 (2016).

    CAS  PubMed  Google Scholar 

  70. Vaitkus, J. A. & Celi, F. S. The role of adipose tissue in cancer-associated cachexia. Exp. Biol. Med. 242, 473–481 (2017).

    CAS  Google Scholar 

  71. Dong, M., Lin, J., Lim, W., Jin, W. & Lee, H. J. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front. Med. 12, 130–138 (2018).

    PubMed  Google Scholar 

  72. Dahlman, I. et al. Adipose tissue pathways involved in weight loss of cancer cachexia. Br. J. Cancer 102, 1541–1548 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Silvério, R. et al. Lipases and lipid droplet-associated protein expression in subcutaneous white adipose tissue of cachectic patients with cancer. Lipids Health Dis. 16, 159 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Contreras, G. A., Strieder-Barboza, C. & Raphael, W. Adipose tissue lipolysis and remodeling during the transition period of dairy cows. J. Anim. Sci. Biotechnol. 8, 41 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Batista, M. L. et al. Adipose tissue inflammation and cancer cachexia: possible role of nuclear transcription factors. Cytokine 57, 9–16 (2012).

    CAS  PubMed  Google Scholar 

  76. Argilés, J. M., López-Soriano, F. J. & Busquets, S. Mechanisms to explain wasting of muscle and fat in cancer cachexia. Curr. Opin. Support. Palliat. Care 1, 293–298 (2008).

    Google Scholar 

  77. Han, J., Meng, Q., Shen, L. & Wu, G. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. 17, 14 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Mracek, T. et al. Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br. J. Cancer 104, 441–447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Geer, E. B., Islam, J. & Buettner, C. Mechanisms of glucocorticoid-induced insulin resistance focus on adipose tissue function and lipid metabolism. Endocrinol. Metab. Clin. North Am. 43, 75–102 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abdullahi, A. & Jeschke, M. G. Taming the flames: targeting white adipose tissue browning in hypermetabolic conditions. Endocr. Rev. 38, 538–549 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Kir, S. & Spiegelman, B. M. Cachexia and brown fat: a burning issue in cancer. Trends Cancer 2, 461–463 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).

    CAS  PubMed  Google Scholar 

  83. Rohm, M. et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22, 1120–1130 (2016).

    CAS  PubMed  Google Scholar 

  84. Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012).

    CAS  PubMed  Google Scholar 

  85. Basu, S. Hypothesizing association between cancer cachexia and Fluorodeoxyglucose-positron emission tomography documented brown adipose tissue hypermetabolism in cancer patients with an illustration in grossly emaciated cachectic patient in hot Indian summer climate: will beta blockers find use in the management of this condition? Indian J. Cancer 52, 223 (2015).

    CAS  PubMed  Google Scholar 

  86. Argilés, J. M., López-Soriano, J., Almendro, V., Busquets, S. & López-Soriano, F. J. Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med. Res. Rev. 25, 49–65 (2005).

    PubMed  Google Scholar 

  87. Makki, K., Froguel, P. & Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013, 139239 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. Argilés, J. M., López-Soriano, F. J. & Busquets, S. Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity. Drug Discov. Today 14, 208–213 (2009).

    PubMed  Google Scholar 

  89. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011).

    CAS  PubMed  Google Scholar 

  90. Wang, S. & Yang, X. Inter-organ regulation of adipose tissue browning. Cell. Mol. Life Sci. 74, 1765–1776 (2017).

    CAS  PubMed  Google Scholar 

  91. Moreno-Navarrete, J. M. et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. Metab. 98, E769–E778 (2013).

    CAS  PubMed  Google Scholar 

  92. Boström, P. et al. A PGC1-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    PubMed  PubMed Central  Google Scholar 

  93. Shan, T., Liang, X., Bi, P. & Kuang, S. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1-Fndc5 pathway in muscle. FASEB J. 27, 1981–1989 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Carriere, A. et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63, 3253–3265 (2014).

    CAS  PubMed  Google Scholar 

  95. Stephens, N. A. et al. Intramyocellular lipid droplets increase with progression of cachexia in cancer patients. J. Cachexia Sarcopenia Muscle 2, 111–117 (2011).

    PubMed  PubMed Central  Google Scholar 

  96. Ambrus, J. L., Ambrus, C. M., Mink, I. B. & Pickren, J. W. Causes of death in cancer patients. J. Med. 6, 61–64 (1975).

    CAS  PubMed  Google Scholar 

  97. Dudgeon, D. & Baracos, V. E. Physiological and functional failure in chronic obstructive pulmonary disease, congestive heart failure and cancer: a debilitating intersection of sarcopenia, cachexia and breathlessness. Curr. Opin.Support. Palliat. Care 10, 236–241 (2016).

    Google Scholar 

  98. Drott, C. & Lundholm, K. Glucose uptake and amino acid metabolism in perfused hearts from tumor-bearing rats. J. Surg. Res. 49, 62–68 (1990).

    CAS  PubMed  Google Scholar 

  99. Hyltander, A., Drott, C., Körner, U., Sandström, R. & Lundholm, K. Elevated energy expenditure in cancer patients with solid tumours. Eur. J. Cancer 27, 9–15 (1991).

    CAS  PubMed  Google Scholar 

  100. Barkhudaryan, A., Scherbakov, N., Springer, J. & Doehner, W. Cardiac muscle wasting in individuals with cancer cachexia. ESC Heart Fail. 4, 458–467 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Olivan, M. et al. Theophylline is able to partially revert cachexia in tumour-bearing rats. Nutr. Metab. 9, 76 (2012).

    CAS  Google Scholar 

  102. Shirazi, L. F., Bissett, J., Romeo, F. & Mehta, J. L. Role of inflammation in heart failure. Curr. Atheroscler. Rep. 19, 27 (2017).

    PubMed  Google Scholar 

  103. Belloum, Y., Rannou-Bekono, F. & Favier, F. B. Cancer-induced cardiac cachexia: pathogenesis and impact of physical activity (Review). Oncol. Rep. 37, 2543–2552 (2017).

    CAS  PubMed  Google Scholar 

  104. Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tian, M. et al. Cardiac alterations in cancer-induced cachexia in mice. Int. J. Oncol. 37, 347–353 (2010).

    CAS  PubMed  Google Scholar 

  106. Mühlfeld, C. et al. Cancer induces cardiomyocyte remodeling and hypoinnervation in the left ventricle of the mouse heart. PLOS ONE 6, e20424 (2011).

    PubMed  PubMed Central  Google Scholar 

  107. Cosper, P. F. & Leinwand, L. A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 71, 1710–1720 (2011).

    CAS  PubMed  Google Scholar 

  108. Zimmers, T. A. et al. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic Res. Cardiol. 112, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Wysong, A. et al. NF-B inhibition protects against tumor-induced cardiac atrophy in vivo. Am. J. Pathol. 178, 1059–1068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Burjonroppa, S. C. et al. Cancer patients with markedly elevated B-type natriuretic peptide may not have volume overload. Am. J. Clin. Oncol. 30, 287–293 (2007).

    CAS  PubMed  Google Scholar 

  111. Ritchie, R. H., Rosenkranz, A. C. & Kaye, D. M. B-Type natriuretic peptide: endogenous regulator of myocardial structure, biomarker and therapeutic target. Curr. Mol. Med. 9, 814–825 (2009).

    CAS  PubMed  Google Scholar 

  112. Tian, M., Asp, M. L., Nishijima, Y. & Belury, M. A. Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice. Int. J. Oncol. 39, 1321–1326 (2011).

    CAS  PubMed  Google Scholar 

  113. Ogawa, T. & de Bold, A. J. The heart as an endocrine organ. Endocr. Connect. 3, R31–R44 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Delafontaine, P. & Yoshida, T. The renin-angiotensin system and the biology of skeletal muscle: mechanisms of muscle wasting in chronic disease states. Trans. Am. Clin. Climatol. Assoc. 127, 245–258 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Penafuerte, C. A. et al. Identification of neutrophil-derived proteases and angiotensin II as biomarkers of cancer cachexia. Br. J. Cancer 114, 680–687 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kurtz, A., Della Bruna, R., Pfeilschifter, J., Taugner, R. & Bauer, C. Atrial natriuretic peptide inhibits renin release from juxtaglomerular cells by a cGMP-mediated process. Proc. Natl Acad. Sci. USA 83, 4769–4773 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gruden, G., Landi, A. & Bruno G. Natriuretic peptides, heart, and adipose tissue: new findings and future developments for diabetes research. Diabetes Care. 37, 2899–2908 (2014).

    CAS  PubMed  Google Scholar 

  118. Nojiri, T. et al. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells. Proc. Natl Acad. Sci. USA 112, 4086–4091 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Solheim, T. S. et al. Is there a genetic cause of appetite loss? — an explorative study in 1,853 cancer patients. J. Cachexia Sarcopenia Muscle 3, 191–198 (2012).

    PubMed  PubMed Central  Google Scholar 

  120. van Norren, K., Dwarkasing, J. T. & Witkamp, R. F. The role of hypothalamic inflammation, the hypothalamic–pituitary–adrenal axis and serotonin in the cancer anorexia–cachexia syndrome. Curr. Opin. Clin. Nutr. Metab. Care 20, 396–401 (2017).

    PubMed  Google Scholar 

  121. Cai, D. & Liu, T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann. NY Acad. Sci. 1243, E1–E39 (2011).

    PubMed  Google Scholar 

  122. Burfeind, K. G., Michaelis, K. A. & Marksa, D. L. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin. Cell Dev. Biol. 54, 42–52 (2016).

    PubMed  Google Scholar 

  123. Dwarkasing, J. T. et al. Differences in food intake of tumour-bearing cachectic mice are associated with hypothalamic serotonin signalling. J. Cachexia Sarcopenia Muscle 6, 84–94 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Dwarkasing, J. T. et al. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci. 17, 26 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Molfino, A. et al. Cancer anorexia: hypothalamic activity and its association with inflammation and appetite-regulating peptides in lung cancer. J. Cachexia Sarcopenia Muscle 8, 40–47 (2017).

    PubMed  Google Scholar 

  126. Evans, W. K. et al. Limited impact of total parenteral nutrition on nutritional status during treatment for small cell lung cancer. Cancer Res. 45, 3347–3353 (1985).

    CAS  PubMed  Google Scholar 

  127. Bodine, S. C. & Furlow, J. D. Glucocorticoids and skeletal muscle. Adv. Exp. Med. Biol. 872, 145–176 (2015).

    CAS  PubMed  Google Scholar 

  128. Joppa, M. A., Gogas, K. R., Foster, A. C. & Markison, S. Central infusion of the melanocortin receptor antagonist agouti-related peptide (AgRP(83–132)) prevents cachexia-related symptoms induced by radiation and colon-26 tumors in mice. Peptides 28, 636–642 (2007).

    CAS  PubMed  Google Scholar 

  129. Cheung, W. W. & Mak, R. H. Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease. Am. J. Physiol. Renal Physiol. 303, F1315–F1324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Murtaza, B. et al. Alteration in taste perception in cancer: causes and strategies of treatment. Front. Physiol. 8, 134 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. Tohgo, A., Kumazawa, E., Akahane, K., Asakawa, A. & Inui, A. Anticancer drugs that induce cancer-associated cachectic syndromes. Expert Rev. Anticancer Ther. 2, 121–129 (2002).

    CAS  PubMed  Google Scholar 

  132. Hopkinson, J. B. The emotional aspects of cancer anorexia. Curr. Opin. Support. Palliat. Care 4, 254–258 (2010).

    Google Scholar 

  133. Lerner, L. et al. Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J. Cachexia Sarcopenia Muscle 6, 317–324 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. Breit, S. N., Tsai, V. W.-W. & Brown, D. A. Targeting obesity and cachexia: identification of the GFRAL receptor–MIC-1/GDF15 pathway. Trends Mol. Med. 23, 1065–1067 (2017).

    CAS  PubMed  Google Scholar 

  135. Borner, T., Liberini, C. G., Lutz, T. A. & Riediger, T. Brainstem GLP-1 signalling contributes to cancer anorexia-cachexia syndrome in the rat. Neuropharmacology 131, 282–290 (2018).

    CAS  PubMed  Google Scholar 

  136. Meloni, A. R. et al. GLP-1 receptor activated insulin secretion from pancreatic-cells: mechanism and glucose dependence. Diabetes Obes. Metab. 15, 15–27 (2013).

    CAS  PubMed  Google Scholar 

  137. Grossberg, A. J., Scarlett, J. M. & Marks, D. L. Hypothalamic mechanisms in cachexia. Physiol. Behav. 100, 478–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Molfino, A., Laviano, A. & Rossi Fanelli, F. Contribution of anorexia to tissue wasting in cachexia. Curr. Opin.Support. Palliat. Care 4, 249–253 (2010).

    Google Scholar 

  139. Bonetto, A. et al. Differential bone loss in mouse models of colon cancer cachexia. Front. Physiol. 7, 679 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Regan, J. N., Trivedi, T., Guise, T. A. & Waning, D. L. The role of TGF in bone-muscle crosstalk. Curr. Osteoporos. Rep. 15, 18–23 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Sartori, R. et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296, C1248–C1257 (2009).

    CAS  PubMed  Google Scholar 

  142. Chambard, L. et al. Bone, muscle, and metabolic parameters predict survival in patients with synchronous bone metastases from lung cancers. Bone 108, 202–209 (2018).

    CAS  PubMed  Google Scholar 

  143. Regan, J. N. et al. Osteolytic breast cancer causes skeletal muscle weakness in an immunocompetent syngeneic mouse model. Front. Endocrinol. 8, 358 (2017).

    Google Scholar 

  144. Meissner, G. The structural basis of ryanodine receptor ion channel function. J. Gen. Physiol. 149, 1065–1089 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Stammers, A. N. et al. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can. J. Physiol. Pharmacol. 93, 1–12 (2015).

    Google Scholar 

  146. Laurent, M. R. et al. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol. Cell. Endocrinol. 432, 14–36 (2016).

    CAS  PubMed  Google Scholar 

  147. Quinn, L. S., Anderson, B. G., Strait-Bodey, L., Stroud, A. M. & Argilés, J. M. Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am. J. Physiol. Metab. 296, E191–E202 (2009).

    CAS  Google Scholar 

  148. Martínez-Hernández, P. L. et al. Serum interleukin-15 levels in cancer patients with cachexia. Oncol. Rep. 28, 1443–1452 (2012).

    PubMed  Google Scholar 

  149. Argiles, J. M., López-Soriano, F. J., Stemmler, B. & Busquets, S. Novel targeted therapies for cancer cachexia. Biochem. J. 474, 2663–2678 (2017).

    CAS  PubMed  Google Scholar 

  150. Gullett, N. P. et al. Nutritional interventions for cancer-induced cachexia. Curr. Probl. Cancer 35, 58–90 (2011).

    PubMed  PubMed Central  Google Scholar 

  151. Delzenne, N. M. & Bindels, L. B. Gut microbiota in 2017: contribution of gut microbiota–host cooperation to drug efficacy. Nat. Rev. Gastroenterol. Hepatol. 15, 69–70 (2017).

    PubMed  Google Scholar 

  152. Shrotriya, S., Walsh, D., Bennani-Baiti, N., Thomas, S. & Lorton, C. C-Reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: a systematic review. PLOS ONE 10, e0143080 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Argilés, J. M. et al. Validation of the CAchexia SCOre (CASCO). Staging cancer patients: the use of minicasco as a simplified tool. Front. Physiol. 8, 92 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    CAS  PubMed  Google Scholar 

  155. Argilés, J. M. et al. Cachexia: a problem of energetic inefficiency. J. Cachexia Sarcopenia Muscle 5, 279–286 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Del Fabbro, E., Orr, T. A. & Stella, S. M. Practical approaches to managing cancer patients with weight loss. Curr. Opin. Support. Palliat. Care 11, 272–277 (2017).

    PubMed  Google Scholar 

  157. Valassi, E., Scacchi, M. & Cavagnini, F. Neuroendocrine control of food intake. Nutr. Metab. Cardiovasc. Dis. 18, 158–168 (2008).

    CAS  PubMed  Google Scholar 

  158. Lau, J. & Herzog, H. CART in the regulation of appetite and energy homeostasis. Front. Neurosci. 8, 313 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Crespo, C. S. et al. Peptides and food intake. Front. Endocrinol. 5, 58 (2014).

    Google Scholar 

  160. Tecott, L. H. Serotonin and the orchestration of energy balance. Cell. Metabolism 6, 352–361 (2007).

    CAS  PubMed  Google Scholar 

  161. Davos, C. H. et al. Body mass and survival in patients with chronic heart failure without cachexia: the importance of obesity. J. Card. Fail. 9, 29–35 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by a grant from the Ministerio de Ciencia y Tecnología (MCyT) (SAF2015-65589-P).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Silvia Busquets.

Ethics declarations

Competing interests

B.S. is an employee of BSA Nutrition Center, which is a non-academic, for-profit affiliation. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argilés, J.M., Stemmler, B., López-Soriano, F.J. et al. Inter-tissue communication in cancer cachexia. Nat Rev Endocrinol 15, 9–20 (2019). https://doi.org/10.1038/s41574-018-0123-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0123-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer