Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of intermittent fasting on prostate cancer tumor growth in a mouse model

Abstract

Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 105 LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm3. Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325: 201–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heilbronn LK, Ravussin E . Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 2003; 78: 361–369.

    Article  CAS  PubMed  Google Scholar 

  3. Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS . Dietary restriction and life-span. Science 2002; 296: 2141–2142;author reply 2141-2.

    Article  CAS  PubMed  Google Scholar 

  4. Lin SJ, Defossez PA, Guarente L . Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289: 2126–2128.

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Chen K, Yao Q, Li J, Wang Y, Liu H et al. The effect of calorie restriction on growth and development in silkworm, Bombyx mori. Arch Insect Biochem Physiol 2009; 71: 159–172.

    Article  CAS  PubMed  Google Scholar 

  6. Iwasaki K, Gleiser CA, Masoro EJ, McMahan CA, Seo EJ, Yu BP . Influence of the restriction of individual dietary components on longevity and age-related disease of Fischer rats: the fat component and the mineral component. J Gerontol 1988; 43: B13–B21.

    Article  CAS  PubMed  Google Scholar 

  7. Beauchene RE, Bales CW, Bragg CS, Hawkins ST, Mason RL . Effect of age of initiation of feed restriction on growth, body composition, and longevity of rats. J Gerontol 1986; 41: 13–19.

    Article  CAS  PubMed  Google Scholar 

  8. Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H . Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 1994; 76: 215–224.

    Article  CAS  PubMed  Google Scholar 

  9. Lass A, Sohal BH, Weindruch R, Forster MJ, Sohal RS . Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med 1998; 25: 1089–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H . Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994; 74: 121–133.

    Article  CAS  PubMed  Google Scholar 

  11. Fontana L, Klein S . Aging, adiposity, and calorie restriction. JAMA 2007; 297: 986–994.

    Article  CAS  PubMed  Google Scholar 

  12. Fontana L, Meyer TE, Klein S, Holloszy JO . Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 2004; 101: 6659–6663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walford RL, Mock D, MacCallum T, Laseter JL . Physiologic changes in humans subjected to severe, selective calorie restriction for two years in biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci 1999; 52: 61–65.

    CAS  PubMed  Google Scholar 

  14. Weyer C, Walford RL, Harper IT, Milner M, MacCallum T, Tataranni PA et al. Energy metabolism after 2 y of energy restriction: the biosphere 2 experiment. Am J Clin Nutr 2000; 72: 946–953.

    Article  CAS  PubMed  Google Scholar 

  15. Michels KB, Ekbom A . Caloric restriction and incidence of breast cancer. JAMA 2004; 291: 1226–1230.

    Article  CAS  PubMed  Google Scholar 

  16. Elias SG, Peeters PH, Grobbee DE, van Noord PA . Transient caloric restriction and cancer risk (the Netherlands). Cancer Causes Control 2007; 18: 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Knauper B, Cheema S, Rabiau M, Borten O . Self-set dieting rules: adherence and prediction of weight loss success. Appetite 2005; 44: 283–288.

    Article  PubMed  Google Scholar 

  18. Burke LE, Dunbar-Jacob JM, Hill MN . Compliance with cardiovascular disease prevention strategies: a review of the research. Ann Behav Med 1997; 19: 239–263.

    Article  CAS  PubMed  Google Scholar 

  19. Miller SL, Wolfe RR . The danger of weight loss in the elderly. J Nutr Health Aging 2008; 12: 487–491.

    Article  CAS  PubMed  Google Scholar 

  20. Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB et al. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss. J Appl Physiol 2007; 102: 634–640.

    Article  PubMed  Google Scholar 

  21. Buschemeyer III WC, Klink JC, Mavropoulos JC, Poulton SH, Demark-Wahnefried W, Hursting SD et al. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice. Prostate 2010; 70: 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  22. Kreisberg JI, Malik SN, Prihoda TJ, Bedolla RG, Troyer DA, Kreisberg S et al. Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res 2004; 64: 5232–5236.

    Article  CAS  PubMed  Google Scholar 

  23. Bonorden MJ, Rogozina OP, Kluczny CM, Grossmann ME, Grambsch PL, Grande JP et al. Intermittent calorie restriction delays prostate tumor detection and increases survival time in TRAMP mice. Nutr Cancer 2009; 61: 265–275.

    Article  PubMed  Google Scholar 

  24. Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH et al. Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 2002; 220: 1315–1320.

    Article  PubMed  Google Scholar 

  25. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002; 418: 344–348.

    Article  CAS  PubMed  Google Scholar 

  26. Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L . Dietary restriction in long-lived dwarf flies. Science 2002; 296: 319.

    Article  CAS  PubMed  Google Scholar 

  27. Dunn SE, Kari FW, French J, Leininger JR, Travlos G, Wilson R et al. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res 1997; 57: 4667–4672.

    CAS  PubMed  Google Scholar 

  28. Hursting SD, Perkins SN, Brown CC, Haines DC, Phang JM . Calorie restriction induces a p53-independent delay of spontaneous carcinogenesis in p53-deficient and wild-type mice. Cancer Res 1997; 57: 2843–2846.

    CAS  PubMed  Google Scholar 

  29. Hursting SD, Switzer BR, French JE, Kari FW . The growth hormone: insulin-like growth factor 1 axis is a mediator of diet restriction-induced inhibition of mononuclear cell leukemia in Fischer rats. Cancer Res 1993; 53: 2750–2757.

    CAS  PubMed  Google Scholar 

  30. Mai V, Colbert LH, Berrigan D, Perkins SN, Pfeiffer R, Lavigne JA et al. Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res 2003; 63: 1752–1755.

    CAS  PubMed  Google Scholar 

  31. Hursting SD, Kari FW . The anti-carcinogenic effects of dietary restriction: mechanisms and future directions. Mutat Res 1999; 443: 235–249.

    Article  CAS  PubMed  Google Scholar 

  32. Pollak M . Macronutrient intake and cancer: how does dietary restriction influence tumor growth and why should we care? Cancer Prev Res 2009; 2: 698–701.

    Article  CAS  Google Scholar 

  33. Kalaany NY, Sabatini DM . Tumours with PI3 K activation are resistant to dietary restriction. Nature 2009; 458: 725–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998; 279: 563–566.

    Article  CAS  PubMed  Google Scholar 

  35. Roddam AW, Allen NE, Appleby P, Key TJ, Ferrucci L, Carter HB et al. Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. Ann Intern Med 2008; 149: 461–471, W83–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Platz EA, Pollak MN, Leitzmann MF, Stampfer MJ, Willett WC, Giovannucci E . Plasma insulin-like growth factor-1 and binding protein-3 and subsequent risk of prostate cancer in the PSA era. Cancer Causes Control 2005; 16: 255–262.

    Article  PubMed  Google Scholar 

  37. Chan JM, Stampfer MJ, Ma J, Gann P, Gaziano JM, Pollak M et al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Natl Cancer Inst 2002; 94: 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  38. Bonorden MJ, Rogozina OP, Kluczny CM, Grossmann ME, Grande JP, Lokshin A et al. Cross-sectional analysis of intermittent versus chronic caloric restriction in the TRAMP mouse. Prostate 2009; 15: 69:317–69:326.

    Google Scholar 

  39. Giovannucci E . Modifiable risk factors for colon cancer. Gastroenterol Clin North Am 2002; 31: 925–943.

    Article  PubMed  Google Scholar 

  40. Katz LE, Satin-Smith MS, Collett-Solberg P, Baker L, Stanley CA, Cohen P . Dual regulation of insulin-like growth factor binding protein-1 levels by insulin and cortisol during fasting. J Clin Endocrinol Metab 1998; 83: 4426–4430.

    CAS  PubMed  Google Scholar 

  41. Russell-Jones DL, Bates AT, Umpleby AM, Hennessy TR, Bowes SB, Hopkins KD et al. A comparison of the effects of IGF-I and insulin on glucose metabolism, fat metabolism and the cardiovascular system in normal human volunteers. Eur J Clin Invest 1995; 25: 403–411.

    Article  CAS  PubMed  Google Scholar 

  42. Boulware SD, Tamborlane WV, Rennert NJ, Gesundheit N, Sherwin RS . Comparison of the metabolic effects of recombinant human insulin-like growth factor-I and insulin. Dose-response relationships in healthy young and middle-aged adults. J Clin Invest 1994; 93: 1131–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajpathak SN, Gunter MJ, Wylie-Rosett J, Ho GY, Kaplan RC, Muzumdar R et al. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab Res Rev 2009; 25: 3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Freedland.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J., Antonelli, J., Lloyd, J. et al. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model. Prostate Cancer Prostatic Dis 13, 350–355 (2010). https://doi.org/10.1038/pcan.2010.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2010.24

Keywords

This article is cited by

Search

Quick links