Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma

Abstract

Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ASO:

anti-sense oligonucleotide

BMSC:

bone marrow stromal cell

ERK:

extracellular signal-regulated kinase

FAK:

focal adhesion kinase

FCM:

flow cytometry method

FERM:

4.1 protein, ezrin, radixin, moesin domain

FN:

fibronectin

gp130:

IL-6 beta receptor, IL-6 signal transducer

IL-6:

interleukin-6

JAK:

Janus kinase

MRD:

minimal residual disease

PYK2:

proline-rich tyrosine kinase 2

STAT:

signal transducer and activator of transcription

Sus:

suspension

TME:

tumor microenvironment.

References

  1. Kesanakurti D, Chetty C, Dinh DH, Gujrati M, Rao JS . Role of MMP-2 in the regulation of IL-6/Stat3 survival signaling via interaction with alpha5beta1 integrin in glioma. Oncogene 2013; 32: 327–340.

    Article  CAS  PubMed  Google Scholar 

  2. Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA et al. Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 2009; 69: 1009–1015.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rajkumar SV . Multiple myeloma: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol 2013; 88: 226–235.

    Article  PubMed  Google Scholar 

  4. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  5. Rajkumar SV . Multiple myeloma: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol 2011; 86: 57–65.

    Article  PubMed  Google Scholar 

  6. Hazlehurst LA, Bewry NN, Nair RR, Pinilla-Ibarz J . Signaling networks associated with BCR-ABL-dependent transformation. Cancer Control 2009; 16: 100–107.

    Article  PubMed  Google Scholar 

  7. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113: 4341–4351.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    Article  CAS  PubMed  Google Scholar 

  9. Shain KH, Dalton WS . Environmental-mediated drug resistance: a target for multiple myeloma therapy. Expert Rev Hematol 2009; 2: 649–662.

    Article  CAS  PubMed  Google Scholar 

  10. Meads MB, Gatenby RA, Dalton WS . Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 2009; 9: 665–674.

    Article  CAS  PubMed  Google Scholar 

  11. Landowski TH, Olashaw NE, Agrawal D, Dalton WS . Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene 2003; 22: 2417–2421.

    Article  CAS  PubMed  Google Scholar 

  12. Nefedova Y, Landowski TH, Dalton WS . Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 2003; 17: 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  13. Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI . Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004; 103: 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  14. McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S et al. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 2010; 16: 483–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Rix U, Fang B, Bai Y, Edwards A, Colinge J et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat Chem Biol 2010; 6: 291–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 2005; 23: 94–101.

    Article  CAS  PubMed  Google Scholar 

  17. St-Germain JR, Taylor P, Tong J, Jin LL, Nikolic A, Stewart II et al. Multiple myeloma phosphotyrosine proteomic profile associated with FGFR3 expression, ligand activation, and drug inhibition. Proc Natl Acad Sci USA 2009; 106: 20127–20132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Moschetta M, Huynh D, Tai YT, Zhang Y, Zhang W et al. Pyk2 promotes tumor progression in multiple myeloma. Blood 2014; 124: 2675–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Butler B, Blystone SD . Tyrosine phosphorylation of beta3 integrin provides a binding site for Pyk2. J Biol Chem 2005; 280: 14556–14562.

    Article  CAS  PubMed  Google Scholar 

  20. Golubovskaya VM . Targeting focal adhesion kinase in cancer-part I. Anticancer Agents Med Chem 2010; 10: 713.

    Article  CAS  PubMed  Google Scholar 

  21. Chauhan D, Hideshima T, Pandey P, Treon S, Teoh G, Raje N et al. RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene 1999; 18: 6733–6740.

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 2000; 275: 27845–27850.

    CAS  PubMed  Google Scholar 

  23. Zhang Y, Moschetta M, Huynh D, Tai YT, Zhang Y, Zhang W et al. Pyk2 promotes tumor progression in multiple myeloma. Blood 2014; 124: 2675–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi CS, Kehrl JH . Pyk2 amplifies epidermal growth factor and c-Src-induced Stat3 activation. J Biol Chem 2004; 279: 17224–17231.

    Article  CAS  PubMed  Google Scholar 

  25. Benbernou N, Muegge K, Durum SK . Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Ralpha. J Biol Chem 2000; 275: 7060–7065.

    Article  CAS  PubMed  Google Scholar 

  26. Miyazaki T, Takaoka A, Nogueira L, Dikic I, Fujii H, Tsujino S et al. Pyk2 is a downstream mediator of the IL-2 receptor-coupled Jak signaling pathway. Genes Dev 1998; 12: 770–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takaoka A, Tanaka N, Mitani Y, Miyazaki T, Fujii H, Sato M et al. Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN-gamma, but not IFN-alpha, signaling. EMBO J 1999; 18: 2480–2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Tassiulas I, Park-Min KH, Reid AC, Gil-Henn H, Schlessinger J et al. 'Tuning' of type I interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nat Immunol 2008; 9: 186–193.

    Article  CAS  PubMed  Google Scholar 

  29. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137: 873–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boucher K, Parquet N, Widen R, Shain K, Baz R, Alsina M et al. Stemness of B-cell progenitors in multiple myeloma bone marrow. Clin Cancer Res 2012; 18: 6155–6168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008; 68: 190–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Shi J, Gu Z, Salama ME, Das S, Wendlandt E et al. Bruton tyrosine kinase is a therapeutic target in stem-like cells from multiple myeloma. Cancer Res 2015; 75: 594–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336.

    Article  CAS  PubMed  Google Scholar 

  34. Kirshner J, Thulien KJ, Martin LD, Debes Marun C, Reiman T, Belch AR et al. A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood 2008; 112: 2935–2945.

    Article  CAS  PubMed  Google Scholar 

  35. Buckbinder L, Crawford DT, Qi H, Ke HZ, Olson LM, Long KR et al. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci USA 2007; 104: 10619–10624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kingsley LA, Chirgwin JM, Guise TA . Breaking new ground to build bone. Proc Natl Acad Sci USA 2007; 104: 10753–10754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guessous F, Yang Y, Johnson E, Marcinkiewicz L, Smith M, Zhang Y et al. Cooperation between c-Met and focal adhesion kinase family members in medulloblastoma and implications for therapy. Mol Cancer Ther 2012; 11: 288–297.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer AN, Gastwirt RF, Schlaepfer DD, Donoghue DJ . The cytoplasmic tyrosine kinase Pyk2 as a novel effector of fibroblast growth factor receptor 3 activation. J Biol Chem 2004; 279: 28450–28457.

    Article  CAS  PubMed  Google Scholar 

  39. Fuhler GM, Brooks R, Toms B, Iyer S, Gengo EA, Park MY et al. Therapeutic potential of SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 inhibition in cancer. Mol Med 2012; 18: 65–75.

    Article  CAS  PubMed  Google Scholar 

  40. Kerr WG . Inhibitor and activator: dual functions for SHIP in immunity and cancer. Ann NY Acad Sci 2011; 1217: 1–17.

    Article  CAS  PubMed  Google Scholar 

  41. Meads MB, Hazlehurst LA, Dalton WS . The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 2008; 14: 2519–2526.

    Article  CAS  PubMed  Google Scholar 

  42. Ara T, Nakata R, Sheard MA, Shimada H, Buettner R, Groshen SG et al. Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res 2013; 73: 3852–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Codony-Servat J, Marin-Aguilera M, Visa L, Garcia-Albeniz X, Pineda E, Fernandez PL et al. Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. Prostate 2013; 73: 512–521.

    Article  CAS  PubMed  Google Scholar 

  44. Kim SM, Kwon OJ, Hong YK, Kim JH, Solca F, Ha SJ et al. Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation. Mol Cancer Ther 2012; 11: 2254–2264.

    Article  CAS  PubMed  Google Scholar 

  45. Lin HY, Hou SC, Chen SC, Kao MC, Yu CC, Funayama S et al. (-)-Epigallocatechin gallate induces Fas/CD95-mediated apoptosis through inhibiting constitutive and IL-6-induced JAK/STAT3 signaling in head and neck squamous cell carcinoma cells. J Agric Food Chem 2012; 60: 2480–2489.

    Article  CAS  PubMed  Google Scholar 

  46. Shi Z, Yang WM, Chen LP, Yang DH, Zhou Q, Zhu J et al. Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res Treat 2012; 135: 737–747.

    Article  CAS  PubMed  Google Scholar 

  47. Voorhees PM, Chen Q, Small GW, Kuhn DJ, Hunsucker SA, Nemeth JA et al. Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death. Br J Haematol 2009; 145: 481–490.

    Article  CAS  PubMed  Google Scholar 

  48. Authentication of Human Cell Lines: Standardization of STR Profiling ATCC Standards Development Organization, pp Designation: ASN-0002. Publication No. ANSI/ATCC ASN-0002-2011 2012.

  49. Burel SA, Han SR, Lee HS, Norris DA, Lee BS, Machemer T et al. Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. Nucleic Acid Ther 2013; 23: 213–227.

    Article  CAS  PubMed  Google Scholar 

  50. Yarde DN, Oliveira V, Mathews L, Wang X, Villagra A, Boulware D et al. Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma. Cancer Res 2009; 69: 9367–9375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meads MB, Li ZW, Dalton WS . A novel TNF receptor-associated factor 6 binding domain mediates NF-kappaB signaling by the common cytokine receptor beta subunit. J Immunol 2010; 185: 1606–1615.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang G, Fang B, Liu RZ, Lin H, Kinose F, Bai Y et al. Mass spectrometry mapping of epidermal growth factor receptor phosphorylation related to oncogenic mutations and tyrosine kinase inhibitor sensitivity. J Proteome Res 2011; 10: 305–319.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jianguo Tao and William S Dalton for helpful discussions and critical reading of the manuscript. This work was supported by Florida Department of Health Bankhead-Coley Team Science Program grant 2BT03 (to KSH and LHA). The Moffitt Proteomics Facility is supported by the US Army Medical Research and Materiel Command under Award W81XWH-08-2-0101 for a National Functional Genomics Center, the National Cancer Institute under Award P30-CA076292 as a Cancer Center Support Grant and the Moffitt Foundation. Patient specimens were obtained from the Total Cancer Care program at Moffitt Cancer Center. Patient specimen collection, phosphoproteome mapping and flow cytometry were performed by the Translational Research, Proteomics and Flow Cytometry Core facilities at Moffitt Cancer Center. Antisense oligonucleotides were provided by Isis Pharmaceuticals (Carlsbad, CA, USA). The focal adhesion kinase inhibitors VS-6062,VS-6063 (defactinib), and VS-4718 were provided by Verastem, Inc. (Needham, MA, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K H Shain.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meads, M., Fang, B., Mathews, L. et al. Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma. Oncogene 35, 2723–2734 (2016). https://doi.org/10.1038/onc.2015.334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.334

This article is cited by

Search

Quick links