Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic miR-20a and miR-106a enhance the invasiveness of human glioma stem cells by directly targeting TIMP-2

Abstract

Emerging evidence has shown that cancer stem cells (CSCs) are the cellular determinants to promote cancer invasion and metastasis. However, the mechanism underlying CSC invasion remains unknown. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression, and their expressions are often dysregulated in cancers. In the present study, we demonstrated that two functionally related microRNAs, miR-20a and -106a (miR-20a/106a), were capable of enhancing the invasiveness of CD133+ glioma stem cells (GSCs) isolated from both glioblastoma cell line U87 and primary human glioma specimens. We found that the level of miR-20a/106a in GSCs was significantly higher than that in the committed CD133 glioma cells, and correlated with the invasive capability of GSCs. By bioinformatic analysis, we identified tissue inhibitor of metalloproteinases-2 (TIMP-2) as one of the miR-20a/106a-targeted genes. TIMP-2 level correlated inversely with miR-20/106 expression. Directly targeting by miR-20a/106a on 3′-untranslation region (3′-UTR) of TIMP-2 mRNA was confirmed by 3′-UTR dual-luciferase reporter assay. Knockdown of miR-20a/106a in GSCs increased endogenous TIMP-2 protein abundance, thereby inhibiting GSC invasion. We also found that Nordy, a synthetic lipoxygenase inhibitor, inhibited GSC invasiveness by elevating the expression of TIMP-2 via downregulation of miR-20a/106a. Our results indicate that miR-20a/106a has a key role in GSC invasion and may serve as targets for treatment of glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Davis FG, McCarthy BJ . Current epidemiological trends and surveillance issues in brain tumors. Expert Rev Anticancer Ther 2001; 1: 395–401.

    Article  CAS  Google Scholar 

  2. Legler JM, Ries LA, Smith MA, Warren JL, Heineman EF, Kaplan RS et al. Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 1999; 91: 1382–1390.

    Article  CAS  Google Scholar 

  3. Caraglia M, Addeo R . Editorial: target therapy in brain tumours and metastases. Curr Cancer Drug Targets 2012; 12: 185.

    Article  CAS  Google Scholar 

  4. Drappatz J, Norden AD, Wen PY . Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Rev Neurother 2009; 9: 519–534.

    Article  Google Scholar 

  5. Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME . Molecular targets of glioma invasion. Cell Mol Life Sci 2007; 64: 458–478.

    Article  CAS  Google Scholar 

  6. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1: 313–323.

    Article  CAS  Google Scholar 

  7. Li F, Tiede B, Massague J, Kang Y . Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res., 2007; 17: 3–14.

    Article  CAS  Google Scholar 

  8. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH et al. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006; 8: R59.

    Article  Google Scholar 

  9. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  Google Scholar 

  10. Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH et al. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett 2008; 265: 124–134.

    Article  CAS  Google Scholar 

  11. Yu SC, Bian XW . Enrichment of cancer stem cells based on heterogeneity of invasiveness. Stem Cell Rev 2009; 5: 66–71.

    Article  CAS  Google Scholar 

  12. Yi L, Zhou ZH, Ping YF, Chen JH, Yao XH, Feng H et al. Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Mod Pathol 2007; 20: 1061–1068.

    Article  CAS  Google Scholar 

  13. Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 2012; 189: 444–453.

    Article  CAS  Google Scholar 

  14. Yao XH, Ping YF, Chen JH, Xu CP, Chen DL, Zhang R et al. Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR. J Pathol 2008; 215: 369–376.

    Article  CAS  Google Scholar 

  15. Yang XJ, Chen GL, Yu SC, Xu C, Xin YH, Li TT et al. TGF-beta1 enhances tumor-induced angiogenesis via JNK pathway and macrophage infiltration in an improved zebrafish embryo/xenograft glioma model. Int Immunopharmacol 2013; 15: 191–198.

    Article  Google Scholar 

  16. Ping YF, Yao XH, Jiang JY, Zhao LT, Yu SC, Jiang T et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol 2011; 224: 344–354.

    Article  CAS  Google Scholar 

  17. Ping YF, Bian XW . Consice review: contribution of cancer stem cells to neovascularization. Stem Cells 2011; 29: 888–894.

    Article  CAS  Google Scholar 

  18. Ping YF, Bian XW . Cancer stem cells switch on tumor neovascularization. Curr Mol Med 2011; 11: 69–75.

    Article  CAS  Google Scholar 

  19. Calin GA, Croce CM . MicroRNA–cancer connection: the beginning of a new tale. Cancer Res 2006; 66: 7390–7394.

    Article  CAS  Google Scholar 

  20. Croce CM . miRNAs in the spotlight: understanding cancer gene dependency. Nat Med 2011; 17: 935–936.

    Article  CAS  Google Scholar 

  21. Esquela-Kerscher A, Slack FJ . Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  Google Scholar 

  22. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  Google Scholar 

  23. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  Google Scholar 

  24. Sayed D, Abdellatif M . MicroRNAs in development and disease. Physiol Rev 2011; 91: 827–887.

    Article  CAS  Google Scholar 

  25. Slack FJ, Weidhaas JB . MicroRNA in cancer prognosis. New Engl J Med 2008; 359: 2720–2722.

    Article  CAS  Google Scholar 

  26. Wienholds E, Plasterk RH . MicroRNA function in animal development. FEBS Lett 2005; 579: 5911–5922.

    Article  CAS  Google Scholar 

  27. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 2006; 103: 9136–9141.

    Article  CAS  Google Scholar 

  28. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    Article  CAS  Google Scholar 

  29. Wang B, Yu SC, Jiang JY, Porter GW, Zhao LT, Wang Z et al. An inhibitor of arachidonate 5-lipoxygenase, Nordy, induces differentiation and inhibits self-renewal of glioma stem-like cells. Stem Cell Rev 2011; 7: 458–470.

    Article  CAS  Google Scholar 

  30. Bian XW, Xu JP, Ping YF, Wang Y, Chen JH, Xu CP et al. Unique proteomic features induced by a potential antiglioma agent, Nordy (dl-nordihydroguaiaretic acid), in glioma cells. Proteomics 2008; 8: 484–494.

    Article  CAS  Google Scholar 

  31. Chen JH, Bian XW, Yao XH, Gong W, Hu J, Chen K et al. Nordy, a synthetic lipoxygenase inhibitor, inhibits the expression of formylpeptide receptor and induces differentiation of malignant glioma cells. Biochem Biophys Res Commun 2006; 342: 1368–1374.

    Article  CAS  Google Scholar 

  32. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  Google Scholar 

  33. Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R et al. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 2008; 27: 2897–2909.

    Article  CAS  Google Scholar 

  34. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    Article  CAS  Google Scholar 

  35. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  36. Mendell JT . miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133: 217–222.

    Article  CAS  Google Scholar 

  37. Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A et al. The miR-17~92 cluster collaborates with the sonic hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 2009; 106: 2812–2817.

    Article  CAS  Google Scholar 

  38. Albini A, Melchiori A, Santi L, Liotta LA, Brown PD, Stetler-Stevenson WG . Tumor cell invasion inhibited by TIMP-2. J Natl Cancer Inst 1991; 83: 775–779.

    Article  CAS  Google Scholar 

  39. Zhao Y, Wang WH, Wang Q, Zhang XD, Ye LH . Lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-κB in hepatoma cells. Biochem Biophys Res Commun 2012; 418: 647–651.

    Article  CAS  Google Scholar 

  40. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  41. Chan JA, Krichevsky AM, Kosik KS . MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029–6033.

    Article  CAS  Google Scholar 

  42. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005; 334: 1351–1358.

    Article  CAS  Google Scholar 

  43. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 2008; 68: 9125–9130.

    Article  CAS  Google Scholar 

  44. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 14.

    Article  Google Scholar 

  45. Hossain A, Kuo MT, Saunders GF . Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 2006; 26: 8191–8201.

    Article  CAS  Google Scholar 

  46. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL . Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007; 310: 442–453.

    Article  CAS  Google Scholar 

  47. Foshay KM, Gallicano GI . miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev Biol 2009; 326: 431–443.

    Article  CAS  Google Scholar 

  48. Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C et al. The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 2010; 70: 3833–3842.

    Article  CAS  Google Scholar 

  49. Imren S, Kohn DB, Shimada H, Blavier L, DeClerck YA . Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res 1996; 56: 2891–2895.

    CAS  Google Scholar 

  50. DeClerck YA, Yean TD, Chan D, Shimada H, Langley KE . Inhibition of tumor invasion of smooth muscle cell layers by recombinant human metalloproteinase inhibitor. Cancer Res 1991; 51: 2151–2157.

    CAS  PubMed  Google Scholar 

  51. Ara T, Fukuzawa M, Kusafuka T, Komoto Y, Oue T, Inoue M et al. Immunohistochemical expression of MMP-2, MMP-9, and TIMP-2 in neuroblastoma: association with tumor progression and clinical outcome. J Pediatr Surg 1998; 33: 1272–1278.

    Article  CAS  Google Scholar 

  52. Furstenberger G, Krieg P, Muller-Decker K, Habenicht AJ . What are cyclooxygenases and lipoxygenases doing in the driver's seat of carcinogenesis? Int J Cancer 2006; 119: 2247–2254.

    Article  CAS  Google Scholar 

  53. Hyde CA, Missailidis S . Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol 2009; 9: 701–715.

    Article  CAS  Google Scholar 

  54. Peters-Golden M, Henderson WR Jr. . Leukotrienes. New Engl J Med 2007; 357: 1841–1854.

    Article  CAS  Google Scholar 

  55. Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O'Byrne K, Nie D et al. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metast Rev 2007; 26: 503–524.

    Article  CAS  Google Scholar 

  56. Le Mercier M, Hastir D, Moles Lopez X, De Neve N, Maris C, Trepant AL et al. A simplified approach for the molecular classification of glioblastomas. PLoS One 2012; 7: e45475.

    Article  CAS  Google Scholar 

  57. Liu J, Liao S, Huang Y, Samuel R, Shi T, Naxerova K et al. PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res 2011; 17: 3638–3648.

    Article  CAS  Google Scholar 

  58. Xu C, Xie D, Yu SC, Yang XJ, He LR, Yang J et al. β-Catenin/POU5F1/SOX2 transcription factor complex mediates IGF-1 receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Res 2013; 73: 3181–3189.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues for helpful comments. This work was supported by the grants from National Natural Science Foundation of China (NSFC, Nos. 81101606, 81101631, 30725035 and 30930103), National Basic Research Program of China (973 Program, No. 2010CB529403) and Natural Science Foundation Project of CQ CSTC (CSTC2012JJA10124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Zhang or X W Bian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, B., Shi, Y. et al. Oncogenic miR-20a and miR-106a enhance the invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene 34, 1407–1419 (2015). https://doi.org/10.1038/onc.2014.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.75

This article is cited by

Search

Quick links