Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CUX1 modulates polarization of tumor-associated macrophages by antagonizing NF-κB signaling

Abstract

Many solid cancers including pancreatic ductal adenocarcinoma (PDAC) are characterized by an extensive stromal reaction that is accompanied by infiltrating tumor-associated macrophages (TAMs). The role of TAMs in malignant tumors is only partially understood. Previously, we identified the transcription factor CUX1 as an important mediator of tumor progression in PDAC. Interestingly, we found that CUX1 is highly expressed not only in tumor cells but also in TAMs. On the basis of these data, we aimed to elucidate the effects of CUX1 in TAMs in vitro and in vivo. We analyzed the effects of CUX1 on cytokine expression using overexpression and knockdown strategies. The cytokine regulation by CUX1 was further assessed by reporter assays, DNA pulldown experiments and chromatin-immunoprecipitation. CUX1 expression in TAMs was analyzed in human pancreatic cancer tissues and in a genetic mouse model. Immunohistochemical analysis revealed strong expression levels of CUX1 in a distinct subset of TAMs in human PDAC tissues. Furthermore, its expression increased during tumor progression in a genetic mouse model of PDAC. Profiling experiments showed that CUX1 downregulates several NF-κB-regulated chemokines such as CXCL10, which have been associated with M1 polarization and inhibition of angiogenesis and tumor progression. We could demonstrate that CUX1 interacts with NF-κB p65, leading to reduced binding of NF-κB p65 to the chemokine promoters. In addition, CUX1 reduces acetylation of NF-κB p65 at K310 by recruiting HDAC1. Functionally, CUX1 expression in TAMs antagonizes T-cell attraction and enhances angiogenesis in vitro. We identified CUX1 as an important modulator of the TAMs phenotype and function by modulating NF-κB-dependent cytokines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics. CA Cancer J Clin 2012; 62: 10–29.

    Article  Google Scholar 

  2. Mahadevan D, Von Hoff DD . Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 2007; 6: 1186–1197.

    Article  CAS  Google Scholar 

  3. Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, Lohr JM et al. Pancreatic cancer microenvironment. Int J Cancer 2007; 121: 699–705.

    Article  CAS  Google Scholar 

  4. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331: 1612–1616.

    Article  CAS  Google Scholar 

  5. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012; 21: 822–835.

    Article  CAS  Google Scholar 

  6. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012; 487: 500–504.

    Article  CAS  Google Scholar 

  7. Neesse A, Frese KK, Bapiro TE, Nakagawa T, Sternlicht MD, Seeley TW et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci USA 2013; 110: 12325–12330.

    Article  CAS  Google Scholar 

  8. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH . Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 2007; 67: 9518–9527.

    Article  CAS  Google Scholar 

  9. Clark CE, Beatty GL, Vonderheide RH . Immunosurveillance of pancreatic adenocarcinoma: insights from genetically engineered mouse models of cancer. Cancer Lett 2009; 279: 1–7.

    Article  CAS  Google Scholar 

  10. Biswas SK, Mantovani A . Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11: 889–896.

    Article  CAS  Google Scholar 

  11. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 2011; 167: e211–e219.

    Article  Google Scholar 

  12. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461–466.

    Article  CAS  Google Scholar 

  13. Karin M, Greten FR . NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–759.

    Article  CAS  Google Scholar 

  14. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 2006; 107: 2112–2122.

    Article  CAS  Google Scholar 

  15. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L et al. p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 2006; 66: 11432–11440.

    Article  CAS  Google Scholar 

  16. Harada R, Dufort D, Denis-Larose C, Nepveu A . Conserved cut repeats in the human cut homeodomain protein function as DNA binding domains. J Biol Chem 1994; 269: 2062–2067.

    CAS  PubMed  Google Scholar 

  17. Sansregret L, Nepveu A . The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene 2008; 412: 84–94.

    Article  CAS  Google Scholar 

  18. Michl P, Ramjaun AR, Pardo OE, Warne PH, Wagner M, Poulsom R et al. CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness. Cancer Cell 2005; 7: 521–532.

    Article  CAS  Google Scholar 

  19. Ripka S, Neesse A, Riedel J, Bug E, Aigner A, Poulsom R et al. CUX1: target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer. Gut 2010; 59: 1101–1110.

    Article  CAS  Google Scholar 

  20. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7: 469–483.

    Article  CAS  Google Scholar 

  21. Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993; 105: 1846–1856.

    Article  CAS  Google Scholar 

  22. Fragiadaki M, Ikeda T, Witherden A, Mason RM, Abraham D, Bou-Gharios G . High doses of TGF-beta potently suppress type I collagen via the transcription factor CUX1. Mol Biol Cell 2011; 22: 1836–1844.

    Article  CAS  Google Scholar 

  23. De Vos J, Thykjaer T, Tarte K, Ensslen M, Raynaud P, Requirand G et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 2002; 21: 6848–6857.

    Article  CAS  Google Scholar 

  24. Lewis CE, Pollard JW . Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006; 66: 605–612.

    Article  CAS  Google Scholar 

  25. Ueda Y, Su Y, Richmond A . CCAAT displacement protein regulates nuclear factor-kappa beta-mediated chemokine transcription in melanoma cells. Melanoma Res 2007; 17: 91–103.

    Article  CAS  Google Scholar 

  26. Nepveu A . Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 2001; 270: 1–15.

    Article  CAS  Google Scholar 

  27. Huang LY, Dumontelle JL, Zolodz M, Deora A, Mozier NM, Golding B . Use of toll-like receptor assays to detect and identify microbial contaminants in biological products. J Clin Microbiol 2009; 47: 3427–3434.

    Article  CAS  Google Scholar 

  28. Schmitz ML, Mattioli I, Buss H, Kracht M . NF-kappaB: a multifaceted transcription factor regulated at several levels. Chembiochem: E J Chem Biol 2004; 5: 1348–1358.

    Article  CAS  Google Scholar 

  29. Li S, Moy L, Pittman N, Shue G, Aufiero B, Neufeld EJ et al. Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/cut homolog, is associated with histone deacetylation. J Biol Chem 1999; 274: 7803–7815.

    Article  CAS  Google Scholar 

  30. Li S, Aufiero B, Schiltz RL, Walsh MJ . Regulation of the homeodomain CCAAT displacement/cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP. Proc Natl Acad Sci USA 2000; 97: 7166–7171.

    Article  CAS  Google Scholar 

  31. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M . The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677–686.

    Article  CAS  Google Scholar 

  32. Catt D, Hawkins S, Roman A, Luo W, Skalnik DG . Overexpression of CCAAT displacement protein represses the promiscuously active proximal gp91(phox) promoter. Blood 1999; 94: 3151–3160.

    CAS  PubMed  Google Scholar 

  33. Nirodi C, Hart J, Dhawan P, Moon NS, Nepveu A, Richmond A . The role of CDP in the negative regulation of CXCL1 gene expression. J Biol Chem 2001; 276: 26122–26131.

    Article  CAS  Google Scholar 

  34. Mihaly Z, Kormos M, Lanczky A, Dank M, Budczies J, Szasz MA et al. A meta-analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast cancer Res Treat 2013; 140: 219–232.

    Article  CAS  Google Scholar 

  35. Liu M, Guo S, Stiles JK . The emerging role of CXCL10 in cancer (Review). Oncology Lett 2011; 2: 583–589.

    Article  CAS  Google Scholar 

  36. Chen LF, Greene WC . Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med 2003; 81: 549–557.

    Article  CAS  Google Scholar 

  37. Chen L, Fischle W, Verdin E, Greene WC . Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001; 293: 1653–1657.

    Article  CAS  Google Scholar 

  38. Chen LF, Mu Y, Greene WC . Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 2002; 21: 6539–6548.

    Article  CAS  Google Scholar 

  39. Sheppard KA, Rose DW, Haque ZK, Kurokawa R, McInerney E, Westin S et al. Transcriptional activation by NF-kappaB requires multiple coactivators. Mol Cell Biol 1999; 19: 6367–6378.

    Article  CAS  Google Scholar 

  40. Ashburner BP, Westerheide SD, Baldwin AS Jr. . The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 2001; 21: 7065–7077.

    Article  CAS  Google Scholar 

  41. Zhang W, Kone BC . NF-kappaB inhibits transcription of the H(+)-K(+)-ATPase alpha(2)-subunit gene: role of histone deacetylases. Am J Physiol Renal Physiol 2002; 283: F904–F911.

    Article  Google Scholar 

  42. Sharma M, Brantley JG, Vassmer D, Chaturvedi G, Baas J, Vanden Heuvel GB . The homeodomain protein Cux1 interacts with Grg4 to repress p27 kip1 expression during kidney development. Gene 2009; 439: 87–94.

    Article  CAS  Google Scholar 

  43. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–296.

    Article  CAS  Google Scholar 

  44. Maeda S, Kamata H, Luo JL, Leffert H, Karin M . IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977–990.

    Article  CAS  Google Scholar 

  45. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 2000; 164: 762–767.

    Article  CAS  Google Scholar 

  46. Biswas SK, Sica A, Lewis CE . Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 2008; 180: 2011–2017.

    Article  CAS  Google Scholar 

  47. Sica A, Bronte V . Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117: 1155–1166.

    Article  CAS  Google Scholar 

  48. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958–969.

    Article  CAS  Google Scholar 

  49. Tsunawaki S, Sporn M, Ding A, Nathan C . Deactivation of macrophages by transforming growth factor-beta. Nature 1988; 334: 260–262.

    Article  CAS  Google Scholar 

  50. Yoshikawa K, Mitsunaga S, Kinoshita T, Konishi M, Takahashi S, Gotohda N et al. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci 2012; 103: 2012–2020.

    Article  CAS  Google Scholar 

  51. Benson DD, Meng X, Fullerton DA, Moore EE, Lee JH, Ao L et al. Activation state of stromal inflammatory cells in murine metastatic pancreatic adenocarcinoma. Am J Physiol Regul, Integr Comp Physiol 2012; 302: R1067–R1075.

    Article  CAS  Google Scholar 

  52. Menen RS, Hassanein MK, Momiyama M, Suetsugu A, Moossa AR, Hoffman RM et al. Tumor-educated macrophages promote tumor growth and peritoneal metastasis in an orthotopic nude mouse model of human pancreatic cancer. In vivo 2012; 26: 565–569.

    PubMed  Google Scholar 

  53. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA . Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99–146.

    Article  CAS  Google Scholar 

  54. Bogdan C, Paik J, Vodovotz Y, Nathan C . Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10. J Biol Chem 1992; 267: 23301–23308.

    CAS  PubMed  Google Scholar 

  55. Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P et al. Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 2000; 275: 36653–36658.

    Article  CAS  Google Scholar 

  56. Darsigny M, St-Jean S, Boudreau F . Cux1 transcription factor is induced in inflammatory bowel disease and protects against experimental colitis. Inflamm Bowel Dis 2010; 16: 1739–1750.

    Article  Google Scholar 

  57. Cadieux C, Kedinger V, Yao L, Vadnais C, Drossos M, Paquet M et al. Mouse mammary tumor virus p75 and p110 CUX1 transgenic mice develop mammary tumors of various histologic types. Cancer Res 2009; 69: 7188–7197.

    Article  CAS  Google Scholar 

  58. Kedinger V, Sansregret L, Harada R, Vadnais C, Cadieux C, Fathers K et al. p110 CUX1 homeodomain protein stimulates cell migration and invasion in part through a regulatory cascade culminating in the repression of E-cadherin and occludin. J Biol Chem 2009; 284: 27701–27711.

    Article  CAS  Google Scholar 

  59. Baumgart S, Glesel E, Singh G, Chen NM, Reutlinger K, Zhang J et al. Restricted heterochromatin formation links NFATc2 repressor activity with growth promotion in pancreatic cancer. Gastroenterology 2012; 142: e381–e387.

    Article  Google Scholar 

  60. Huth J, Buchholz M, Kraus JM, Schmucker M, von Wichert G, Krndija D et al. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system. BMC Cell Biol 2010; 11: 24.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants of the European Commisson FP7 grant (Collaborative Project ‘EPC-TM-Net, to PM, AN and TMG), Deutsche Forschungsgemeinschaft (DFG) (to PM), the LOEWE initiative of the state of Hessen, the Behring-Roentgen Foundation (to PM) and the Deutsche Krebshilfe (to PM). This publication reflects only the authors’ views. The European Community is not liable for any use that may be made of the information herein. We thank Dr Pietro DiFazio, Dept. of Experimental Surgery, for his help with FACS analyses.

Financial support: This work was supported in part by grants of the European Commisson FP7 grant (Collaborative Project ‘EPC-TM-Net, to PM, AN and TMG), Deutsche Forschungsgemeinschaft (DFG) (to PM), the LOEWE initiative of the state of Hessen, the Behring-Roentgen Foundation (to PM), and the Deutsche Krebshilfe (to PM). This publication reflects only the authors' views. The European Community is not liable for any use that may be made of the information herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Michl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühnemuth, B., Mühlberg, L., Schipper, M. et al. CUX1 modulates polarization of tumor-associated macrophages by antagonizing NF-κB signaling. Oncogene 34, 177–187 (2015). https://doi.org/10.1038/onc.2013.530

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.530

Keywords

This article is cited by

Search

Quick links