Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The DEAD-box protein p72 regulates ERα-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERα-positive breast cancer

Abstract

The DEAD-box RNA helicases p68 (DDX5) and p72 (DDX17) have been shown to act as transcriptional co-activators for a diverse range of transcription factors, including oestrogen receptor-α (ERα). Here, we show that, although both proteins interact with and co-activate ERα in reporter gene assays, small interfering RNA-mediated knockdown of p72, but not p68, results in a significant inhibition of oestrogen-dependent transcription of endogenous ERα-responsive genes and oestrogen-dependent growth of MCF-7 and ZR75-1 breast cancer cells. Furthermore, immunohistochemical staining of ERα-positive primary breast cancers for p68 and p72 indicate that p72 expression is associated with an increased period of relapse-free and overall survival (P=0.006 and 0.016, respectively), as well as being inversely associated with Her2 expression (P=0.008). Conversely, p68 shows no association with relapse-free period, or overall survival, but it is associated with an increased expression of Her2 (P=0.001), AIB-1 (P<0.001) and higher tumour grade (P=0.044). Our data thus highlight a crucial role for p72 in ERα co-activation and oestrogen-dependent cell growth and provide evidence in support of distinct but important roles for both p68 and p72 in regulating ERα activity in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ali S, Coombes RC . (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2: 101–112.

    Article  PubMed  Google Scholar 

  • Ali S, Metzger D, Bornert JM, Chambon P . (1993). Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J 12: 1153–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY et al. (1997). AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277: 965–968.

    Article  CAS  PubMed  Google Scholar 

  • Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J et al. (2005). The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24: 543–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunone G, Briand PA, Miksicek RJ, Picard D . (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15: 2174–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzdar A, Howell A . (2001). Advances in aromatase inhibition: clinical efficacy and tolerability in the treatment of breast cancer. Clin Cancer Res 7: 2620–2635.

    CAS  PubMed  Google Scholar 

  • Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V et al. (2006). The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11: 547–560.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Riedl T, Washbrook E, Pace PE, Coombes RC, Egly JM et al. (2000). Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol Cell 6: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S et al. (2008). The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res 68: 7938–7946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H et al. (1999). Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19: 5363–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K et al. (2007). DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9: 604–611.

    Article  CAS  PubMed  Google Scholar 

  • Fuller-Pace FV . (2006). DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34: 4206–4215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass CK . (1994). Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 15: 391–407.

    CAS  PubMed  Google Scholar 

  • Goodman RH, Smolik S . (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553–1577.

    CAS  PubMed  Google Scholar 

  • Grisouard J, Medunjanin S, Hermani A, Shukla A, Mayer D . (2007). Glycogen synthase kinase-3 protects estrogen receptor alpha from proteasomal degradation and is required for full transcriptional activity of the receptor. Mol Endocrinol 21: 2427–2439.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JK, Chan FS, O'Connor DJ, Mittnacht S, Zhong S, Lu X . (1999). RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell 3: 181–193.

    Article  CAS  PubMed  Google Scholar 

  • Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M et al. (2008). Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456: 663–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs A-MF, Nicol SM, Hislop RG, Jaffray EG, Hay RT, Fuller-Pace FV . (2007). SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene 26: 5866–5876.

    Article  CAS  PubMed  Google Scholar 

  • Jensen ED, Niu L, Caretti G, Nicol SM, Teplyuk N, Stein GS et al. (2008). p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation. J Cell Biochem 103: 1438–1451.

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Sarwar N, Peston D, Kulinskaya E, Shousha S, Coombes RC et al. (2007). Phosphorylation of estrogen receptor-alpha at Ser167 is indicative of longer disease-free and overall survival in breast cancer patients. Clin Cancer Res 13: 5769–5776.

    Article  CAS  PubMed  Google Scholar 

  • Klinge CM . (2000). Estrogen receptor interaction with co-activators and co-repressors. Steroids 65: 227–251.

    Article  CAS  PubMed  Google Scholar 

  • Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS . (1994). Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269: 4458–4466.

    CAS  PubMed  Google Scholar 

  • Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K et al. (1989). Birth of the D-E-A-D box. Nature 337: 121–122.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia J, Periyasamy M, Thomas RS, Christian M, Leao M, Jat P et al. (2006). ZNF366 is an estrogen receptor corepressor that acts through CtBP and histone deacetylases. Nucleic Acids Res 34: 6126–6136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al. (1995). The nuclear receptor superfamily: the second decade. Cell 83: 835–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medunjanin S, Hermani A, De Servi B, Grisouard J, Rincke G, Mayer D . (2005). Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor alpha and is involved in the regulation of receptor activity. J Biol Chem 280: 33006–33014.

    Article  CAS  PubMed  Google Scholar 

  • Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751–763.

    Article  CAS  PubMed  Google Scholar 

  • Morris C, Wakeling A . (2002). Fulvestrant (‘Faslodex’)--a new treatment option for patients progressing on prior endocrine therapy. Endocr Relat Cancer 9: 267–276.

    Article  CAS  PubMed  Google Scholar 

  • Ogilvie VC, Wilson BJ, Nicol SM, Morrice NA, Saunders LR, Barber GN et al. (2003). The highly related DEAD box RNA helicases p68 and p72 exist as heterodimers in cells. Nucleic Acids Res 31: 1470–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA et al. (2003). Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95: 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. (2007). Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9: 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossow KL, Janknecht R . (2003). Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22: 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Sarwar N, Kim JS, Jiang J, Peston D, Sinnett HD, Madden P et al. (2006). Phosphorylation of ERalpha at serine 118 in primary breast cancer and in tamoxifen-resistant tumours is indicative of a complex role for ERalpha phosphorylation in breast cancer progression. Endocr Relat Cancer 13: 851–861.

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M . (2000). Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103: 843–852.

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Janknecht R . (2007). Concerted activation of the Mdm2 promoter by p72 RNA helicase and the coactivators p300 and P/CAF. J Cell Biochem 101: 1252–1265.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, Fuller Pace FV . (1998). Expression of the ‘DEAD box’ RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J Pathol 184: 351–359.

    Article  CAS  PubMed  Google Scholar 

  • Tanner NK, Linder P . (2001). DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8: 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S . (2008). Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J Mol Endocrinol 40: 173–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tora L, Mullick A, Metzger D, Ponglikitmongkol M, Park I, Chambon P . (1989). The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J 8: 1981–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trowbridge JM, Rogatsky I, Garabedian MJ . (1997). Regulation of estrogen receptor transcriptional enhancement by the cyclin A/Cdk2 complex. Proc Natl Acad Sci USA 94: 10132–10137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlmann-Schiffler H, Rossler OG, Stahl H . (2002). The mRNA of DEAD box protein p72 is alternatively translated into an 82-kDa RNA helicase. J Biol Chem 277: 1066–1075.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Yanagisawa J, Kitagawa H, Takeyama K, Ogawa S, Arao Y et al. (2001). A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J 20: 1341–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV . (2004). The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 5: 11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Breast Cancer Campaign, Association for International Cancer Research, Cancer Research UK and the Breast Cancer Research Trust. We are grateful for support from the NIHR Biomedical Research Centre funding scheme, and thank David Meek, Malcolm Parker and lab members for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Ali or F V Fuller-Pace.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wortham, N., Ahamed, E., Nicol, S. et al. The DEAD-box protein p72 regulates ERα-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERα-positive breast cancer. Oncogene 28, 4053–4064 (2009). https://doi.org/10.1038/onc.2009.261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.261

Keywords

This article is cited by

Search

Quick links