Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells

Abstract

Mantle cell lymphoma (MCL) is characterized by the uncontrolled overexpression of cyclin D1. Styryl sulfonyl compounds have shown potent antitumor activity against MCL by inducing cell-cycle arrest and apoptosis. However, the exact molecular mechanism by which these compounds function is yet to be elucidated. Here, we show that the prototypical styryl sulfonyl compound ON 01910.Na decreased cyclin D1 and c-Myc protein levels in MCL cells, whereas mRNA levels of cyclin D1 were minimally affected. Notably, ON 01910.Na suppressed eukaryotic translation initiation factor 4E (eIF4E)-mediated cyclin D1 mRNA translation, decreased levels of phosphorylated Akt, mammalian target of Rapamycin (mTOR) and eIF4E-binding protein (eIF4E-BP), lowered the cap site binding activity of eIF4E and directly inhibited activity of phosphatidylinositol-3 kinase (PI-3K). Analysis of apoptotic signaling pathways revealed that ON 01910.Na induced the release of cytochrome c from mitochondria, altered expression of Bcl-2 family of proteins and stimulated activation of caspases. Taken together, styryl sulfonyls can cause a rapid decrease of cyclin D1 by blocking cyclin D1 mRNA translation through inhibition of the PI-3K/Akt/mTOR/eIF4E-BP signaling pathway and triggering a cytochrome c-dependent apoptotic pathway in MCL cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adams JM, Cory S . (2007). Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19: 488–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alam A, Cohen LY, Aouad S, Sekaly RP . (1999). Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 190: 1879–1890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aoki M, Jiang H, Vogt PK . (2004). Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA 101: 13613–13617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B et al. (2007). 4E-binding protein 1: a key molecular ‘funnel factor’ in human cancer with clinical implications. Cancer Res 67: 7551–7555.

    Article  CAS  PubMed  Google Scholar 

  5. Bertoni F, Ponzoni M . (2007). The cellular origin of mantle cell lymphoma. Int J Biochem Cell Biol 39: 1747–1753.

    Article  CAS  PubMed  Google Scholar 

  6. Bertoni F, Rinaldi A, Zucca E, Cavalli F . (2006). Update on the molecular biology of mantle cell lymphoma. Hematol Oncol 24: 22–27.

    Article  CAS  PubMed  Google Scholar 

  7. Brady SC, Allan LA, Clarke PR . (2005). Regulation of caspase 9 through phosphorylation by protein kinase C zeta in response to hyperosmotic stress. Mol Cell Biol 25: 10543–10555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brauns SC, Dealtry G, Milne P, Naude R, Van de Venter M . (2005). Caspase-3 activation and induction of PARP cleavage by cyclic dipeptide cyclo(Phe-Pro) in HT-29 cells. Anticancer Res 25: 4197–4202.

    CAS  PubMed  Google Scholar 

  9. Campo E, Raffeld M, Jaffe ES . (1999). Mantle-cell lymphoma. Semin Hematol 36: 115–127.

    CAS  PubMed  Google Scholar 

  10. de Leeuw RJ, Davies JJ, Rosenwald A, Bebb G, Gascoyne RD, Dyer MJ et al. (2004). Comprehensive whole genome array CGH profiling of mantle cell lymphoma model genomes. Hum Mol Genet 13: 1827–1837.

    Article  CAS  PubMed  Google Scholar 

  11. Dhanasekaran DN, Reddy EP . (2008). JNK signaling in apoptosis. Oncogene 27: 6245–6251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elmore S . (2007). Apotosis: a review of programmed cell death. Toxicol pathol 35: 495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ely S, Di Liberto M, Niesvizky R, Baughn LB, Cho HJ, Hatada EN et al. (2005). Mutually exclusive cyclin-dependent kinase 4/cyclin D1 and cyclin-dependent kinase 6/cyclin D2 pairing inactivates retinoblastoma protein and promotes cell cycle dysregulation in multiple myeloma. Cancer Res 65: 11345–11353.

    Article  CAS  PubMed  Google Scholar 

  14. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M . (2004). PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30: 193–204.

    Article  PubMed  Google Scholar 

  15. Gingras AC, Raught B, Sonenberg N . (2001). Regulation of translation initiation by FRAP/mTOR. Genes Dev 15: 807–826.

    Article  CAS  PubMed  Google Scholar 

  16. Gumireddy K, Reddy MV, Cosenza SC, Boominathan R, Baker SJ, Papathi N et al. (2005). ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7: 275–286.

    Article  CAS  PubMed  Google Scholar 

  17. Kawamata N, Chen J, Koeffler HP . (2007). Suberoylanilide hydroxamic acid (SAHA; vorinostat) suppresses translation of cyclin D1 in mantle cell lymphoma cells. Blood 110: 2667–2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim R . (2005). Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103: 1551–1560.

    Article  CAS  PubMed  Google Scholar 

  19. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW . (1993). MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90: 3516–3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leroux D, Le Marc’Hadour F, Gressin R, Jacob MC, Keddari E, Monteil M et al. (1991). Non-Hodgkin's lymphomas with t(11;14)(q13;q32): a subset of mantle zone/intermediate lymphocytic lymphoma? Br J Haematol 77: 346–353.

    Article  CAS  PubMed  Google Scholar 

  21. Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH . (2007). Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog 13: 93–158.

    Article  PubMed  Google Scholar 

  22. Lin S, Wang W, Wilson GM, Yang X, Brewer G, Holbrook NJ et al. (2000). Down-regulation of cyclin D1 expression by prostaglandin A(2) is mediated by enhanced cyclin D1 mRNA turnover. Mol Cell Biol 20: 7903–7913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490.

    Article  CAS  PubMed  Google Scholar 

  24. Martin SA, Ouchi T . (2005). BRCA1 phosphorylation regulates caspase-3 activation in UV-induced apoptosis. Cancer Res 65: 10657–10662.

    Article  CAS  PubMed  Google Scholar 

  25. Mattoon DR, Lamothe B, Lax I, Schlessinger J . (2004). The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol 2: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Osaki M, Oshimura M, Ito H . (2004). PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9: 667–676.

    Article  CAS  PubMed  Google Scholar 

  27. Park IW, Reddy MV, Reddy EP, Groopman JE . (2007). Evaluation of novel cell cycle inhibitors in mantle cell lymphoma. Oncogene 26: 5635–5642.

    Article  CAS  PubMed  Google Scholar 

  28. Prasad A, Qamri Z, Wu J, Ganju RK . (2007). Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. J Leukoc Biol 82: 465–476.

    Article  CAS  PubMed  Google Scholar 

  29. Raught B, Gingras AC . (1999). eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol 31: 43–57.

    Article  CAS  PubMed  Google Scholar 

  30. Reddy MV, Mallireddigari MR, Cosenza SC, Pallela VR, Iqbal NM, Robell KA et al. (2008). Design, synthesis, and biological evaluation of (E)-styrylbenzylsulfones as novel anticancer agents. J Med Chem 51: 86–100.

    Article  CAS  PubMed  Google Scholar 

  31. Rizzatti EG, Falcao RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK et al. (2005). Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol 130: 516–526.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. (2003). The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3: 185–197.

    Article  CAS  PubMed  Google Scholar 

  33. Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ et al. (1995). Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270: 21176–21180.

    Article  CAS  PubMed  Google Scholar 

  34. Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV . (1993). Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 13: 7358–7363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. (2004). The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10: 484–486.

    Article  CAS  PubMed  Google Scholar 

  36. Shi Y, Sharma A, Wu H, Lichtenstein A, Gera J . (2005). Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 280: 10964–10973.

    Article  CAS  PubMed  Google Scholar 

  37. Vermeulen K, Van Bockstaele DR, Berneman ZN . (2005). Apoptosis: mechanisms and relevance in cancer. Ann Hematol 84: 627–639.

    Article  CAS  PubMed  Google Scholar 

  38. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. (2004). Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428: 332–337.

    Article  CAS  PubMed  Google Scholar 

  39. Witzig TE . (2005). Current treatment approaches for mantle-cell lymphoma. J Clin Oncol 23: 6409–6414.

    Article  CAS  PubMed  Google Scholar 

  40. Yoder-Hill J, Pause A, Sonenberg N, Merrick WC . (1993). The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. J Biol Chem 268: 5566–5573.

    CAS  PubMed  Google Scholar 

  41. Zucca E, Roggero E, Pinotti G, Pedrinis E, Cappella C, Venco A et al. (1995). Patterns of survival in mantle cell lymphoma. Ann Oncol 6: 257–262.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a charitable contribution from Mr and Mrs Henryk and Rochelle Schwarz and SBIR grant # 1 R43 CA134108-01A1. E Premkumar Reddy was supported by grant CA109820. Disclosure: Dr Groopman is a consultant to Onconova Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Groopman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, A., Park, IW., Allen, H. et al. Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene 28, 1518–1528 (2009). https://doi.org/10.1038/onc.2008.502

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.502

Keywords

This article is cited by

Search

Quick links