Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small cell carcinoma of the prostate

Subjects

Key Points

  • Small-cell carcinoma (SCC) of the prostate is a rare subtype of prostate cancer characterized by an aggressive clinical course

  • Approximately 40–50% of men with prostatic SCCs have a history of conventional prostatic adenocarcinoma

  • SCC of the prostate is usually not responsive to androgen deprivation and disease progression is not associated with rises in serum PSA levels

  • A biopsy of accessible lesions should be considered when SCC is suspected

  • Chemotherapy represents the backbone of management for men with advanced prostatic SCC

  • SCC is radiosensitive and radiotherapy might offer local palliation of symptoms such as bladder outlet obstruction and pain

Abstract

Pure small-cell carcinoma (SCC) of the prostate is a rare entity and one of the most aggressive malignancies of the prostate. Histologically, prostatic SCCs of the prostate are part of a spectrum of anaplastic tumours of the prostate and are similar to SCCs of the lungs. In most cases, SCC of the prostate is associated with conventional prostatic adenocarcinoma. Both components of these mixed tumours frequently share molecular alterations such as ERG gene rearrangements or AURKA and MYCN amplifications, suggesting a common clonal origin. The clinical behaviour of small-cell prostate carcinomas is characterized by extensive local disease, visceral disease, and low PSA levels despite large metastatic burden. Commonly, the emergence of the SCC occurs in patients with high-grade adenocarcinoma who are often treated with androgen deprivation treatment (ADT). However, SCCs do not usually benefit from ADT. A biopsy of accessible lesions is strongly recommended to identify those with SCC pathological features, as management is undoubtedly affected by this finding. Chemotherapy is the standard approach for treating patients with either localized or advanced prostatic SCC. Despite the emergence of more-aggressive treatment modalities, the prognosis of men with prostatic SCC remains dismal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphologic spectrum of prostatic neuroendocrine tumours.

Similar content being viewed by others

Richard J. Rebello, Christoph Oing, … Robert G. Bristow

References

  1. di Sant'Agnese, P. A. & Cockett, A. T. Neuroendocrine differentiation in prostatic malignancy. Cancer 78, 357–361 (1996).

    Article  CAS  Google Scholar 

  2. di Sant'Agnese, P. A. Neuroendocrine differentiation in prostatic carcinoma: an update on recent developments. Ann. Oncol. 12 (Suppl. 2), S135–S140 (2001).

    Article  Google Scholar 

  3. Casella, R. et al. Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J. Urol. 160, 406–410 (1998).

    Article  CAS  Google Scholar 

  4. Aprikian, A. G., Cordon-Cardo, C., Fair, W. R. & Reuter, V. E. Characterization of neuroendocrine differentiation in human benign prostate and prostatic adenocarcinoma. Cancer 71, 3952–3965 (1993).

    Article  CAS  Google Scholar 

  5. Cohen, R. J., Glezerson, G. & Haffejee, Z. Neuro-endocrine cells—a new prognostic parameter in prostate cancer. Br. J. Urol. 68, 258–262 (1991).

    Article  CAS  Google Scholar 

  6. Shariff, A. H. & Ather, M. H. Neuroendocrine differentiation in prostate cancer. Urology 68, 2–8 (2006).

    Article  Google Scholar 

  7. Abrahamsson, P. A., Cockett, A. T. & di Sant'Agnese, P. A. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate Suppl. 8, 37–42 (1998).

    Article  CAS  Google Scholar 

  8. Allen, F. J., Van Velden, D. J. & Heyns, C. F. Are neuroendocrine cells of practical value as an independent prognostic parameter in prostate cancer? Br. J. Urol. 75, 751–754 (1995).

    Article  CAS  Google Scholar 

  9. Ahlgren, G. et al. Regressive changes and neuroendocrine differentiation in prostate cancer after neoadjuvant hormonal treatment. Prostate 42, 274–279 (2000).

    Article  CAS  Google Scholar 

  10. Tan, M. O. et al. Prostate cancer and neuroendocrine differentiation. Int. Urol. Nephrol. 31, 75–82 (1999).

    Article  CAS  Google Scholar 

  11. Cohen, M. K. et al. Neuroendocrine differentiation in prostatic adenocarcinoma and its relationship to tumour progression. Cancer 74, 1899–1903 (1994).

    Article  CAS  Google Scholar 

  12. Ishida, E., Nakamura, M., Shimada, K., Tasaki, M. & Konishi, N. Immunohistochemical analysis of neuroendocrine differentiation in prostate cancer. Pathobiology 76, 30–38 (2009).

    Article  CAS  Google Scholar 

  13. Jeetle, S. S. et al. Neuroendocrine differentiation does not have independent prognostic value in conservatively treated prostate cancer. Virchows Arch. 461, 103–107 (2012).

    Article  CAS  Google Scholar 

  14. Aprikian, A. G. et al. Neuroendocrine differentiation in metastatic prostatic adenocarcinoma. J. Urol. 151, 914–919 (1994).

    Article  CAS  Google Scholar 

  15. Wenk, R. E., Bhagavan, B. S., Levy, R., Miller, D. & Weisburger, W. Ectopic ACTH, prostatic oat cell carcinoma, and marked hypernatraemia. Cancer 40, 773–778 (1977).

    Article  CAS  Google Scholar 

  16. Miyoshi, Y. et al. Neuroendocrine differentiated small cell carcinoma presenting as recurrent prostate cancer after androgen deprivation therapy. BJU Int. 88, 982–983 (2001).

    Article  CAS  Google Scholar 

  17. Tanaka, M. et al. Progression of prostate cancer to neuroendocrine cell tumour. Int. J. Urol. 8, 431–437 (2001).

    Article  CAS  Google Scholar 

  18. Turbat-Herrera, E. A. et al. Neuroendocrine differentiation in prostatic carcinomas. A retrospective autopsy study. Arch. Pathol. Lab. Med. 112, 1100–1105 (1988).

    CAS  PubMed  Google Scholar 

  19. Shah, R. B. et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy programme. Cancer Res. 64, 9209–9216 (2004).

    Article  CAS  Google Scholar 

  20. Tetu, B. et al. Small cell carcinoma of the prostate. Part I. A clinicopathologic study of 20 cases. Cancer 59, 1803–1809 (1987).

    Article  CAS  Google Scholar 

  21. Yao, J. L. et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am. J. Surg. Pathol. 30, 705–712 (2006).

    Article  Google Scholar 

  22. Ro, J. Y., Tetu, B., Ayala, A. G. & Ordonez, N. G. Small cell carcinoma of the prostate. II. Immunohistochemical and electron microscopic studies of 18 cases. Cancer 59, 977–982 (1987).

    Article  CAS  Google Scholar 

  23. Wang, W. & Epstein, J. I. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am. J. Surg. Pathol. 32, 65–71 (2008).

    Article  Google Scholar 

  24. Agoff, S. N. et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumours. Mod. Pathol. 13, 238–242 (2000).

    Article  CAS  Google Scholar 

  25. Ordonez, N. G. Value of thyroid transcription factor-1, E-cadherin, BG8, WT1, and CD44S immunostaining in distinguishing epithelial pleural mesothelioma from pulmonary and nonpulmonary adenocarcinoma. Am. J. Surg. Pathol. 24, 598–606 (2000).

    Article  CAS  Google Scholar 

  26. Lotan, T. L. et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod. Pathol. 24, 820–828 (2011).

    Article  CAS  Google Scholar 

  27. Han, B. et al. Characterization of ETS gene aberrations in select histologic variants of prostate carcinoma. Mod. Pathol. 22, 1176–1185 (2009).

    Article  CAS  Google Scholar 

  28. Guo, C. C. et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum. Pathol. 42, 11–17 (2011).

    Article  CAS  Google Scholar 

  29. Williamson, S. R. et al. ERG-TMPRSS2 rearrangement is shared by concurrent prostatic adenocarcinoma and prostatic small cell carcinoma and absent in small cell carcinoma of the urinary bladder: evidence supporting monoclonal origin. Mod. Pathol. 24, 1120–1127 (2011).

    Article  CAS  Google Scholar 

  30. Scheble, V. J. et al. ERG rearrangement in small cell prostatic and lung cancer. Histopathology 56, 937–943 (2011).

    Article  Google Scholar 

  31. Schelling, L. A. et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: the superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum. Pathol. 44, 2227–2233 (2013).

    Article  CAS  Google Scholar 

  32. Evans, A. J., Humphrey, P. A., Belani, J., van der Kwast, T. H. & Srigley, J. R. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am. J. Surg. Pathol. 30, 684–693 (2006).

    Article  Google Scholar 

  33. Pearse, A. G. The diffuse endocrine system and the implications of the APUD concept. Int. Surg. 64, 5–7 (1979).

    CAS  PubMed  Google Scholar 

  34. Oesterling, J. E., Hauzeur, C. G. & Farrow, G. M. Small cell anaplastic carcinoma of the prostate: a clinical, pathological and immunohistological study of 27 patients. J. Urol. 147, 804–807 (1992).

    Article  CAS  Google Scholar 

  35. Ismail, A. H., Landry, F., Aprikian, A. G. & Chevalier, S. Androgen ablation promotes neuroendocrine cell differentiation in dog and human prostate. Prostate 51, 117–125 (2002).

    Article  Google Scholar 

  36. Wright, M. E., Tsai, M. J. & Aebersold, R. Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol. Endocrinol. 17, 1726–1737 (2003).

    Article  CAS  Google Scholar 

  37. Yuan, T. C. et al. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr. Relat. Cancer 13, 151–167 (2006).

    Article  CAS  Google Scholar 

  38. Mosquera, J. M. et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 15, 1–10 (2013).

    Article  CAS  Google Scholar 

  39. Spiess, P. E. et al. Treatment outcomes of small cell carcinoma of the prostate: a single-centre study. Cancer 110, 1729–1737 (2007).

    Article  Google Scholar 

  40. Helpap, B., Kollermann, J. & Oehler, U. Neuroendocrine differentiation in prostatic carcinomas: histogenesis, biology, clinical relevance, and future therapeutical perspectives. Urol. Int. 62, 133–138 (1999).

    Article  CAS  Google Scholar 

  41. Bonkhoff, H. & Remberger, K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28, 98–106 (1996).

    Article  CAS  Google Scholar 

  42. Stratton, M., Evans, D. J. & Lampert, I. A. Prostatic adenocarcinoma evolving into carcinoid: selective effect of hormonal treatment? J. Clin. Pathol. 39, 750–756 (1986).

    Article  CAS  Google Scholar 

  43. Burchardt, T. et al. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J. Urol. 162, 1800–1805 (1999).

    Article  CAS  Google Scholar 

  44. Scheble, V. J. et al. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumour. Mod. Pathol. 23, 1061–1067 (2010).

    Article  CAS  Google Scholar 

  45. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  Google Scholar 

  46. Lapuk, A. V. et al. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. J. Pathol. 227, 286–297 (2012).

    Article  CAS  Google Scholar 

  47. Hansel, D. E. et al. Shared TP53 gene mutation in morphologically and phenotypically distinct concurrent primary small cell neuroendocrine carcinoma and adenocarcinoma of the prostate. Prostate 69, 603–609 (2009).

    Article  CAS  Google Scholar 

  48. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    Article  CAS  Google Scholar 

  49. Clegg, N. et al. Molecular characterization of prostatic small-cell neuroendocrine carcinoma. Prostate 55, 55–64 (2003).

    Article  CAS  Google Scholar 

  50. Tzelepi, V. et al. Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin. Cancer Res. 18, 666–677 (2012).

    Article  CAS  Google Scholar 

  51. Palmgren, J. S., Karavadia, S. S. & Wakefield, M. R. Unusual and underappreciated: small cell carcinoma of the prostate. Semin. Oncol. 34, 22–29 (2007).

    Article  CAS  Google Scholar 

  52. Abrahamsson, P. A. Neuroendocrine cells in tumour growth of the prostate. Endocr. Relat. Cancer 6, 503–519 (1999).

    Article  CAS  Google Scholar 

  53. Alshaikh, O. M., Al-Mahfouz, A. A., Al-Hindi, H., Mahfouz, A. B. & Alzahrani, A. S. Unusual cause of ectopic secretion of adrenocorticotropic hormone: Cushing syndrome attributable to small cell prostate cancer. Endocr. Pract. 16, 249–254 (2010).

    Article  Google Scholar 

  54. Aparicio, A. M. et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin. Cancer Res. 19, 3621–3630 (2013).

    Article  CAS  Google Scholar 

  55. Flechon, A. et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumour Group (GETUG) P01 trial. Ann. Oncol. 22, 2476–2481 (2011).

    Article  CAS  Google Scholar 

  56. Loriot, Y. et al. Combining carboplatin and etoposide in docetaxel-pretreated patients with castration-resistant prostate cancer: a prospective study evaluating also neuroendocrine features. Ann. Oncol. 20, 703–708 (2009).

    Article  CAS  Google Scholar 

  57. Culine, S. et al. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers. J. Urol. 178, 844–848 (2007).

    Article  CAS  Google Scholar 

  58. McCutcheon, I. E., Eng, D. Y. & Logothetis, C. J. Brain metastasis from prostate carcinoma: antemortem recognition and outcome after treatment. Cancer 86, 2301–2311 (1999).

    Article  CAS  Google Scholar 

  59. Cussenot, O., Villette, J. M., Cochand-Priollet, B. & Berthon, P. Evaluation and clinical value of neuroendocrine differentiation in human prostatic tumours. Prostate Suppl. 8, 43–51 (1998).

    Article  CAS  Google Scholar 

  60. Heinrich, E. et al. Neuroendocrine tumour cells in prostate cancer: evaluation of the neurosecretory products 5-hydroxytryptamine, bombesin, and gastrin—impact on angiogenesis and clinical follow-up. Prostate 71, 1752–1758 (2011).

    Article  CAS  Google Scholar 

  61. Ferrero-Pous, M., Hersant, A. M., Pecking, A., Bresard-Leroy, M. & Pichon, M. F. Serum chromogranin-A in advanced prostate cancer. BJU Int. 88, 790–796 (2001).

    Article  CAS  Google Scholar 

  62. Amato, R. J. et al. Chemotherapy for small cell carcinoma of prostatic origin. J. Urol. 147, 935–937 (1992).

    Article  CAS  Google Scholar 

  63. Hindson, D. A., Knight, L. L. & Ocker, J. M. Small-cell carcinoma of prostate. Transient complete remission with chemotherapy. Urology 26, 182–184 (1985).

    Article  CAS  Google Scholar 

  64. Steineck, G. et al. Cytotoxic treatment of aggressive prostate tumours with or without neuroendocrine elements. Acta Oncol. 41, 668–674 (2002).

    Article  Google Scholar 

  65. Papandreou, C. N. et al. Results of a phase II study with doxorubicin, etoposide, and cisplatin in patients with fully characterized small-cell carcinoma of the prostate. J. Clin. Oncol. 20, 3072–3080 (2002).

    Article  CAS  Google Scholar 

  66. Deorah, S., Rao, M. B., Raman, R., Gaitonde, K. & Donovan, J. F. Survival of patients with small cell carcinoma of the prostate during 1973–2003: a population-based study. BJU Int. 109, 824–830 (2012).

    Article  Google Scholar 

  67. Bolton, D. M., Chiu, S. T., Clarke, S. & Angus, D. Primary small cell carcinoma of the prostate: unusual modes of presentation. Aust. N. Z. J. Surg. 64, 91–94 (1994).

    Article  CAS  Google Scholar 

  68. Kim, K. H., Kim, Y. B., Lee, J. K., Kim, Y. J. & Jung, T. Y. Pathologic results of radical prostatectomies in patients with simultaneous atypical small acinar proliferation and prostate cancer. Korean J. Urol. 51, 398–402 (2010).

    Article  Google Scholar 

  69. Sule-Suso, J. & Brunt, A. M. Small cell carcinoma of the prostate. Br. J. Radiol. 65, 726–728 (1992).

    Article  CAS  Google Scholar 

  70. NCC guidelines Index: Version 2.2013. Prostate Cancer [online], (2013).

  71. Auperin, A. et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N. Engl. J. Med. 341, 476–484 (1999).

    Article  CAS  Google Scholar 

  72. Rubenstein, J. H. et al. Small cell anaplastic carcinoma of the prostate: seven new cases, review of the literature, and discussion of a therapeutic strategy. Am. J. Clin. Oncol. 20, 376–380 (1997).

    Article  CAS  Google Scholar 

  73. Moore, S. R., Reinberg, Y. & Zhang, G. Small cell carcinoma of prostate: effectiveness of hormonal versus chemotherapy. Urology 39, 411–416 (1992).

    Article  CAS  Google Scholar 

  74. NCC guidelines Index: Version 2.2013. Adult cancer pain [online], (2013).

  75. Janssen, A. & Moedema, R. H. Mitosis as an anti-cancer target. Oncogene 30, 2799–2809 (2011).

    Article  CAS  Google Scholar 

  76. Stein, M. E. et al. Small cell (neuroendocrine) carcinoma of the prostate: aetiology, diagnosis, prognosis, and therapeutic implications—a retrospective study of 30 patients from the rare cancer network. Am. J. Med. Sci. 336, 478–488 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.N., M.S., and O.N.K. researched data and were involved in writing the article. J.I.E. and M.A.E. contributed to discussions of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Mario A. Eisenberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadal, R., Schweizer, M., Kryvenko, O. et al. Small cell carcinoma of the prostate. Nat Rev Urol 11, 213–219 (2014). https://doi.org/10.1038/nrurol.2014.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing