Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MGMT testing—the challenges for biomarker-based glioma treatment

Key Points

  • O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation predicts responsiveness to alkylating chemotherapies in glioblastoma, but is not a prognostic biomarker in gliomas lacking isocitrate dehydrogenase gene mutations

  • Treatment decisions in elderly patients with glioblastoma should take MGMT promoter methylation status into account

  • MGMT testing to select patients with glioblastoma for clinical trials is feasible, and withholding temozolomide from patients without MGMT promoter methylation is justified in this context

  • MGMT-mediated resistance to alkylating chemotherapy is not overcome by alternative dosing schedules, but might be circumvented by the use of alternative treatments

  • Epigenetic inactivation of MGMT might facilitate the induction of point mutations in TP53 and other oncogenes during tumorigenesis and tumour progression

  • Quality-assured MGMT testing should be implemented as a molecular diagnostic method in the next WHO classification of brain tumours

Abstract

Many patients with malignant gliomas do not respond to alkylating agent chemotherapy. Alkylator resistance of glioma cells is mainly mediated by the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). Epigenetic silencing of the MGMT gene by promoter methylation in glioma cells compromises this DNA repair mechanism and increases chemosensitivity. MGMT promoter methylation is, therefore, a strong prognostic biomarker in paediatric and adult patients with glioblastoma treated with temozolomide. Notably, elderly patients (>65–70 years) with glioblastoma whose tumours lack MGMT promoter methylation derive minimal benefit from such chemotherapy. Thus, MGMT promoter methylation status has become a frequently requested laboratory test in neuro-oncology. This Review presents current data on the prognostic and predictive relevance of MGMT testing, discusses clinical trials that have used MGMT status to select participants, evaluates known issues concerning the molecular testing procedure, and addresses the necessity for molecular-context-dependent interpretation of MGMT test results. Whether MGMT promoter methylation testing should be offered to all individuals with glioblastoma, or only to elderly patients and those in clinical trials, is also discussed. Justifications for withholding alkylating agent chemotherapy in patients with MGMT-unmethylated glioblastomas outside clinical trials, and the potential role for MGMT testing in other gliomas, are also discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MGMT-mediated DNA repair.
Figure 2: Regulation of MGMT.
Figure 3: Methylation-specific PCR.
Figure 4: Pyrosequencing.
Figure 5: Pragmatic approach to MGMT methylation testing.
Figure 6: Biomarker-driven algorithm for glioma treatment.

Similar content being viewed by others

References

  1. Hess, K. R., Broglio, K. R. & Bondy, M. L. Adult glioma incidence trends in the United States, 1977–2000. Cancer 101, 2293–2299 (2004).

    PubMed  Google Scholar 

  2. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    CAS  PubMed  Google Scholar 

  3. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    CAS  PubMed  Google Scholar 

  4. Weller, M. et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J. Clin. Oncol. 27, 5743–5750 (2009).

    CAS  PubMed  Google Scholar 

  5. Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740 (2009).

    CAS  PubMed  Google Scholar 

  6. Chinot, O. et al. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722 (2014).

    CAS  PubMed  Google Scholar 

  7. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Herrlinger, U. et al. Survival and quality of life in the randomized, multicenter GLARIUS trial investigating bevacizumab/irinotecan versus standard temozolomide in newly diagnosed, MGMT-non-methylated glioblastoma patients. J. Clin. Oncol. 32 (Suppl. 5), 2042 (2014).

    Google Scholar 

  9. Stupp, R. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma and methylated O6-methylguanine-DNA methyltransferase (MGMT) gene promoter: key results of the multicenter, randomized, open-label, controlled, phase III CENTRIC study. J. Clin. Oncol. 31 (Suppl. 3), 2009 (2013).

    Google Scholar 

  10. Nabors, L. et al. A randomized phase II study investigating cilengitide added to standard chemoradiotherapy in patients with newly diagnosed glioblastoma with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) gene promoter: initial report of the CORE study. Eur. J. Cancer 49 (Suppl. 3), S17–S18 (2013).

    Google Scholar 

  11. Wick, W. et al. Enzastaurin before and concomitant with radiation therapy, followed by enzastaurin maintenance therapy, in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation. Neuro. Oncol. 15, 1405–1412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wick, W. et al. Radiation therapy and concurrent plus adjuvant temsirolimus (CCI-779) versus chemo-irradiation with temozolomide in newly diagnosed glioblastoma without methylation of the MGMT gene promoter. J. Clin. Oncol. 32 (Suppl. 5), 2003 (2014).

    Google Scholar 

  13. Tolcher, A. W. et al. Marked inactivation of O6-alkylguanine-DNA alkyltransferase activity with protracted temozolomide schedules. Br. J. Cancer 88, 1004–1011 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilbert, M. R. et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J. Clin. Oncol. 31, 4085–4091 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wick, W. et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 13, 707–715 (2012).

    CAS  PubMed  Google Scholar 

  16. Malmström, A. et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 13, 916–926 (2012).

    PubMed  Google Scholar 

  17. Kreisl, T. N. et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745 (2009).

    CAS  PubMed  Google Scholar 

  18. Wick, A. et al. Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. J. Clin. Oncol. 25, 3357–3361 (2007).

    CAS  PubMed  Google Scholar 

  19. Perry, J. R. et al. Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J. Clin. Oncol. 28, 2051–2057 (2010).

    CAS  PubMed  Google Scholar 

  20. Brandes, A. A. et al. Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br. J. Cancer 95, 1155–1160 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Norden, A. D. et al. Phase 2 study of dose-intense temozolomide in recurrent glioblastoma. Neuro. Oncol. 15, 930–935 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kesari, S. et al. Phase II study of protracted daily temozolomide for low-grade gliomas in adults. Clin. Cancer Res. 15, 330–337 (2009).

    CAS  PubMed  Google Scholar 

  23. Felsberg, J. et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int. J. Cancer 129, 659–670 (2011).

    CAS  PubMed  Google Scholar 

  24. Belanich, M. et al. Intracellular localization and intercellular heterogeneity of the human DNA repair protein O6-methylguanine-DNA methyltransferase. Cancer Chemother. Pharmacol. 37, 547–555 (1996).

    CAS  PubMed  Google Scholar 

  25. Karran, P. & Bignami, M. Self-destruction and tolerance in resistance of mammalian cells to alkylation damage. Nucleic Acids Res. 20, 2933–2940 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Karran, P. & Hampson, R. Genomic instability and tolerance to alkylating agents. Cancer Surv. 28, 69–85 (1996).

    CAS  PubMed  Google Scholar 

  27. Liu, L. & Gerson, S. L. Targeted modulation of MGMT: clinical implications. Clin. Cancer Res. 12, 328–331 (2006).

    CAS  PubMed  Google Scholar 

  28. Dolan, M. E. & Pegg, A. E. O6-benzylguanine and its role in chemotherapy. Clin. Cancer Res. 3, 837–47 (1997).

    CAS  PubMed  Google Scholar 

  29. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000).

    CAS  PubMed  Google Scholar 

  30. Friedman, H. S. et al. Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J. Clin. Oncol. 16, 3570–3575 (1998).

    CAS  PubMed  Google Scholar 

  31. Dolan, M. E., Moschel, R. C. & Pegg, A. E. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc. Natl Acad. Sci. USA 87, 5368–5372 (1990).

    CAS  PubMed  Google Scholar 

  32. Watts, G. S. et al. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol. Cell Biol. 17, 5612–5619 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakagawachi, T. et al. Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22, 8835–8844 (2003).

    CAS  PubMed  Google Scholar 

  34. Mikeska, T. et al. Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis. J. Mol. Diagn. 9, 368–381 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Everhard, S. et al. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro. Oncol. 11, 348–356 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Weller, M. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat. Rev. Neurol. 6, 39–51 (2010).

    CAS  PubMed  Google Scholar 

  37. Sciuscio, D. et al. Extent and patterns of MGMT promoter methylation in glioblastoma- and respective glioblastoma-derived spheres. Clin. Cancer Res., 17, 255–266 (2011).

    CAS  PubMed  Google Scholar 

  38. Moen, E. L. et al. The role of gene body cytosine modifications in MGMT expression and sensitivity to temozolomide. Mol. Cancer Ther. 13, 1334–1344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, W. et al. The essential role of histone H3 Lys9 di-methylation and MeCP2 binding in MGMT silencing with poor DNA methylation of the promoter CpG island. J. Biochem. 137, 431–440 (2005).

    CAS  PubMed  Google Scholar 

  40. Kitange, G. J. et al. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin. Cancer Res. 18, 4070–4079 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Costello, J. F. Futscher, B. W., Kroes, R. A. & Pieper, R. O. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol. Cell Biol. 14, 6515–6521 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lavon, I. et al. Novel mechanism whereby nuclear factor κB mediates DNA damage repair through regulation of O6-methylguanine-DNA-methyltransferase. Cancer Res. 67, 8952–8959 (2007).

    CAS  PubMed  Google Scholar 

  43. Bhakat, K. K. & Mitra, S. Regulation of the human O6-methylguanine-DNA methyltransferase gene by transcriptional coactivators cAMP response element-binding protein-binding protein and p300. J. Biol. Chem. 275, 34197–34204 (2000).

    CAS  PubMed  Google Scholar 

  44. Boldogh, I. et al. Regulation of expression of the DNA repair gene O6-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling. Cancer Res. 58, 3950–3956 (1998).

    CAS  PubMed  Google Scholar 

  45. Harris, L. C., Remack, J. S., Houghton, P. J. & Brent, T. P. Wild-type p53 suppresses transcription of the human O6-methylguanine-DNA methyltransferase gene. Cancer Res. 56, 2029–2032 (1996).

    CAS  PubMed  Google Scholar 

  46. Pistollato, F. et al. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28, 851–862 (2010).

    CAS  PubMed  Google Scholar 

  47. Persano, L. et al. BMP2 sensitizes glioblastoma stem-like cells to temozolomide by affecting HIF-1α stability and MGMT expression. Cell Death Dis. 3, e412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Weiler, M. et al. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy. Proc. Natl Acad. Sci. USA 111, 409–414 (2014).

    CAS  PubMed  Google Scholar 

  49. Kreth, S. et al. In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol. 125, 671–681 (2013).

    CAS  PubMed  Google Scholar 

  50. Wang, J., Sai, K., Chen, F. R. & Chen, Z. P. miR-181b modulates glioma cell sensitivity to temozolomide by targeting MEK1. Cancer Chemother. Pharmacol. 72, 147–158 (2013).

    CAS  PubMed  Google Scholar 

  51. Zhang, W. et al. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro Oncol. 14, 712–719 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Quintavalle, C. et al. miR-221/222 target the DNA methyltransferase MGMT in glioma cells. PLoS ONE 8, e74466 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Friedman, H. S. et al. DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J. Clin. Oncol. 16, 3851–3857 (1998).

    CAS  PubMed  Google Scholar 

  54. Hegi, M. E. et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. 10, 1871–1874 (2004).

    CAS  PubMed  Google Scholar 

  55. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jacinto, F. V. & Esteller, M. Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22, 247–253 (2007).

    CAS  PubMed  Google Scholar 

  60. Wirtz, S. et al. Both base excision repair and O6-methylguanine-DNA methyltransferase protect against methylation-induced colon carcinogenesis. Carcinogenesis 31, 2111–2117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yin, D. et al. DNA repair gene O6-methylguanine-DNA methyltransferase: promoter hypermethylation associated with decreased expression and G:C to A:T mutations of p53 in brain tumors. Mol. Carcinog. 36, 23–31 (2003).

    CAS  PubMed  Google Scholar 

  62. Nakamura, M. et al. Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis 22, 1715–1719 (2001).

    CAS  PubMed  Google Scholar 

  63. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  64. Grasbon-Frodl, E. M. et al. Intratumoral homogeneity of MGMT promoter hypermethylation as demonstrated in serial stereotactic specimens from anaplastic astrocytomas and glioblastomas. Int. J. Cancer 121, 2458–2464 (2007).

    CAS  PubMed  Google Scholar 

  65. Wang, H. et al. Temozolomide-mediated DNA methylation in human myeloid precursor cells: differential involvement of intrinsic and extrinsic apoptotic pathways. Clin. Cancer Res. 19, 2699–2709 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lamb, K. L. et al. Tumor-associated mutations in O6-methylguanine DNA-methyltransferase (MGMT) reduce DNA repair functionality. Mol. Carcinog. 53, 201–210 (2014).

    CAS  PubMed  Google Scholar 

  67. Mikeska, T., Bock, C., Do, H. & Dobrovic, A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev. Mol. Diagn. 12, 473–487 (2012).

    CAS  PubMed  Google Scholar 

  68. Thon, N. et al. Predominant influence of MGMT methylation in non-resectable glioblastoma after radiotherapy plus temozolomide. J. Neurol. Neurosurg. Psychiatry 82, 441–446 (2011).

    PubMed  Google Scholar 

  69. Tetzner, R. Prevention of PCR cross-contamination by UNG treatment of bisulfite-treated DNA. Methods Mol. Biol. 507, 357–370 (2009).

    CAS  PubMed  Google Scholar 

  70. Anda, T. et al. Relationship between expression of O6-methylguanine-DNA methyltransferase, glutathione-S-transferase π in glioblastoma and the survival of the patients treated with nimustine hydrochloride: an immunohistochemical analysis. Neurol. Res. 25, 241–248 (2003).

    CAS  PubMed  Google Scholar 

  71. Christians, A. et al. Prognostic value of three different methods of MGMT promoter methylation analysis in a prospective trial on newly diagnosed glioblastoma. PLoS ONE 7, e33449 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bady, P. et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. 124, 547–560 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Capper, D, Mittelbronn, M., Meyermann, R. & Schittenhelm, J. Pitfalls in the assessment of MGMT expression and in its correlation with survival in diffuse astrocytomas: proposal of a feasible immunohistochemical approach. Acta Neuropathol. 115, 249–259 (2008).

    CAS  PubMed  Google Scholar 

  74. Preuss, I. et al. O6-methylguanine-DNA methyltransferase activity in breast and brain tumors. Int. J. Cancer 61, 321–326 (1995).

    CAS  PubMed  Google Scholar 

  75. Kreth, S. et al. O6-methylguanine-DNA methyltransferase (MGMT) mRNA expression predicts outcome in malignant glioma independent of MGMT promoter methylation. PLoS ONE 6, e17156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vlassenbroeck, I. et al. Validation of real-time methylation-specific PCR to determine O6-methylguanine-DNA methyltransferase gene promoter methylation in glioma. J. Mol. Diagn. 10, 332–337 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. van Krieken, J. H. et al. European Consensus Conference for external quality assessment in molecular pathology. Ann. Oncol. 24, 1958–1963 (2012).

    Google Scholar 

  78. Deans, Z. C. et al. Improvement in the quality of molecular analysis of EGFR in non-small-cell lung cancer detected by three rounds of external quality assessment. J. Clin. Pathol. 66, 319–325 (2013).

    CAS  PubMed  Google Scholar 

  79. Deans, Z. C. et al. External quality assessment of BRAF molecular analysis in melanoma. J. Clin. Pathol. 67, 120–124 (2014).

    PubMed  Google Scholar 

  80. Emile, J. F. et al. Improvement of the quality of BRAF testing in melanomas with nationwide external quality assessment, for the BRAF EQA group. BMC Cancer 13, 472 (2013).

  81. van den Bent, M. J. et al. Interlaboratory comparison of IDH mutation detection. J. Neurooncol. 112, 173–178 (2013).

    PubMed  Google Scholar 

  82. Felsberg, J. et al. Molecular diagnostics of glioma—results of the first interlaboratory comparison of MGMT promoter methylation testing at twenty-three academic centers in Germany, Austria and the Netherlands. Clin. Neuropathol. 32, 414–415 (2013).

    Google Scholar 

  83. Weller, M. et al. EANO guideline on the diagnosis and treatment of malignant glioma. Lancet Oncol. (in press).

  84. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC–NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    CAS  PubMed  Google Scholar 

  85. Gállego Pérez-Larraya, J. et al. Temozolomide in elderly patients with newly diagnosed glioblastoma and poor performance status: an ANOCEF phase II trial. J. Clin. Oncol. 29, 3050–3055 (2011).

    PubMed  Google Scholar 

  86. Reifenberger, G. et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int. J. Cancer 131, 1342–1350 (2012).

    CAS  PubMed  Google Scholar 

  87. Wiestler, B. et al. Malignant astrocytomas of elderly patients lack favorable molecular markers: an analysis of the NOA-08 study collective. Neuro Oncol. 15, 1017–1026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Weller, M. & von Deimling, A. Isocitrate dehydrogenase mutations: a challenge to traditional views on the genesis and malignant progression of gliomas. Glia 59, 1200–1204 (2011).

    PubMed  Google Scholar 

  89. Wick, W. et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J. Clin. Oncol. 27, 5874–5880 (2009).

    CAS  PubMed  Google Scholar 

  90. Van den Bent, M. J. et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J. Clin. Oncol. 27, 5881–5886 (2009).

    PubMed  PubMed Central  Google Scholar 

  91. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    CAS  PubMed  Google Scholar 

  93. Wick, W. et al. Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 81, 1515–1522 (2013).

    CAS  PubMed  Google Scholar 

  94. van den Bent, M. J. et al. MGMT-STP27 methylation status as predictive marker for response to PCV in anaplastic oligodendrogliomas and oligoastrocytomas. A report from EORTC study 26951. Clin. Cancer Res. 19, 5513–5522 (2013).

    CAS  PubMed  Google Scholar 

  95. McShane, L. M. et al. Reporting recommendations for tumor marker prognostic studies. J. Clin. Oncol. 23, 9067–9072 (2005).

    PubMed  Google Scholar 

  96. O'Leary, T. J. Assessing and comparing the performance of molecular diagnostic tests. J. Mol. Diagn. 16, 1–2 (2014).

    PubMed  Google Scholar 

  97. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Herrlinger, U. et al. Phase II trial of lomustine plus temozolomide chemotherapy in addition to radiotherapy in newly diagnosed glioblastoma: UKT-03. J. Clin. Oncol. 24, 4412–4417 (2006).

    PubMed  Google Scholar 

  99. Glas, M. et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J. Clin. Oncol. 27, 1257–1261 (2009).

    CAS  PubMed  Google Scholar 

  100. Sijben, A. E. et al. Toxicity from chemoradiotherapy in older patients with glioblastoma multiforme. J. Neurooncol. 89, 97–103 (2008).

    PubMed  Google Scholar 

  101. Gerstner, E. R. et al. MGMT methylation is a prognostic biomarker in elderly patients with newly diagnosed glioblastoma. Neurology 73, 1509–1510 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Brandes, A. A. et al. A prospective study on glioblastoma in the elderly. Cancer 97, 657–662 (2003).

    PubMed  Google Scholar 

  103. Minniti, G. et al. Phase II study of short-course radiotherapy plus concomitant and adjuvant temozolomide in elderly patients with glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 83, 93–99 (2012).

    CAS  PubMed  Google Scholar 

  104. Herman, J. G., Graff, J. R., Myöhänen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).

    CAS  PubMed  Google Scholar 

  105. Ronaghi, M., Uhlén, M. & Nyrén, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

    CAS  PubMed  Google Scholar 

  106. Bisulfite sequencing. Wikipedia[online], (2014).

Download references

Acknowledgements

The authors thank David Capper and Benedikt Wiestler for useful discussions and the provision of data obtained from searches of The Cancer Genome Atlas database.

Author information

Authors and Affiliations

Authors

Contributions

W.W., M.v.d.B., M. Weiler, C.P., M.H., M.P and G.R. researched data for the article. W.W., M. Weller, M.S., M. Weiler, A.v.D., C.P., M.H. and G.R. made substantial contributions to the discussion of content. W.W., M. Weller, M.v.d.B., M.H., M.P. and G.R. contributed equally to writing the article. All authors contributed to the review and editing of the manuscript before submission.

Corresponding author

Correspondence to Wolfgang Wick.

Ethics declarations

Competing interests

W.W. has received consulting and lecture fees from MagForce, Merck Sharp & Dohme, and Roche, and research support from Apogenix, Boehringer Ingelheim, Eli Lilly, Merck Sharp & Dohme and Roche. He also serves on the Steering Committees of the AVAglio and CENTRIC trials, and is lead investigator of other trials in glioma. M. Weller has received research grants from Isarna Therapeutics, Bayer, Merck Serono, Merck Sharp & Dohme and Roche, and honoraria for lectures or advisory boards from Isarna Therapeutics, MagForce, Merck Serono, Merck Sharp & Dohme and Roche. M.v.d.B. acts as a consultant and is a member of the speakers' bureau for Merck Sharp & Dohme. M.S. has received honoraria from Merck Serono. M.H. has acted as a consultant for MDx Health, Merck Serono, Merck Sharp & Dohme and Roche. M.P. has received consultancy and lecture fees from Medac, Merck Serono, and Novartis, and research support from Merck Serono and Novartis. G.R. has received a research grant from Roche, and honoraria from Merck Serono and Roche. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wick, W., Weller, M., van den Bent, M. et al. MGMT testing—the challenges for biomarker-based glioma treatment. Nat Rev Neurol 10, 372–385 (2014). https://doi.org/10.1038/nrneurol.2014.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.100

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer