Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Altered B cell signalling in autoimmunity

Key Points

  • Human genetic variants associated with the development of systemic autoimmunity modulate B cell receptor (BCR) and co-receptor signalling, suggesting a role for dysregulated B cell signalling in promoting disease pathogenesis.

  • Altered B cell signalling probably facilitates a breach in B cell tolerance through distinct effects on B cell selection during the establishment of the naive BCR repertoire and on peripheral activation responses.

  • BCR signalling functions as a 'master regulator' of coordinate co-receptor signalling, facilitating central and peripheral B cell tolerance mechanisms throughout B cell development. Hypomorphic and/or hypermorphic signalling variants affect both the negative and positive selection of autoreactive BCR specificities.

  • During humoral autoimmunity, autoantibody-producing plasma cells are generated through parallel extrafollicular and germinal centre (GC) B cell activation pathways.

  • Activated autoreactive B cells orchestrate the formation of spontaneous, autoimmune GCs by initiating breaks in T cell tolerance and by promoting subsequent T follicular helper cell differentiation. These events are mediated by B cell antigen presentation to cognate CD4+ T cells, probably in concert with B cell co-stimulatory and cytokine signalling.

Abstract

Recent work has provided new insights into how altered B cell-intrinsic signals — through the B cell receptor (BCR) and key co-receptors — function together to promote the pathogenesis of autoimmunity. These combined signals affect B cells at two distinct stages: first, in the selection of the naive repertoire; and second, during extrafollicular or germinal centre activation responses. Thus, dysregulated signalling can lead to both an altered naive BCR repertoire and the generation of autoantibody-producing B cells. Strikingly, high-affinity autoantibodies predate and predict disease in several autoimmune disorders, including type 1 diabetes and systemic lupus erythematosus. This Review summarizes how, rather than being a downstream consequence of autoreactive T cell activation, dysregulated B cell signalling can function as a primary driver of many human autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cell receptor and co-receptor signalling govern B cell selection and maturation.
Figure 2: Altered B cell receptor and co-receptor signalling promotes increased autoreactivity within the naive B cell repertoire.
Figure 3: T cell-dependent and T cell-independent extrafollicular activation pathways in autoimmunity.
Figure 4: Self-reactive B cells initiate autoimmune germinal centre formation by facilitating breaks in T cell tolerance.
Figure 5: A sequential model of the progression of systemic autoimmunity.

Similar content being viewed by others

References

  1. Deng, Y. & Tsao, B. P. Advances in lupus genetics and epigenetics. Curr. Opin. Rheumatol. 26, 482–492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Niewold, T. B. Advances in lupus genetics. Curr. Opin. Rheumatol. 27, 440–447 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yarwood, A., Huizinga, T. W. & Worthington, J. The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford) 55, 199–209 (2016).

    Article  CAS  Google Scholar 

  4. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Concannon, P., Rich, S. S. & Nepom, G. T. Genetics of type 1A diabetes. N. Engl. J. Med. 360, 1646–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Jackson, S. W., Kolhatkar, N. S. & Rawlings, D. J. B cells take the front seat: dysregulated B cell signals orchestrate loss of tolerance and autoantibody production. Curr. Opin. Immunol. 33, 70–77 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hardy, R. R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Allman, D. & Pillai, S. Peripheral B cell subsets. Curr. Opin. Immunol. 20, 149–157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Otipoby, K. L. et al. The B-cell antigen receptor integrates adaptive and innate immune signals. Proc. Natl Acad. Sci. USA 112, 12145–12150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, J. L., Chiles, T. C., Sen, R. J. & Rothstein, T. L. Inducible nuclear expression of NF-κB in primary B cells stimulated through the surface Ig receptor. J. Immunol. 146, 1685–1691 (1991).

    CAS  PubMed  Google Scholar 

  13. Norvell, A., Mandik, L. & Monroe, J. G. Engagement of the antigen-receptor on immature murine B lymphocytes results in death by apoptosis. J. Immunol. 154, 4404–4413 (1995).

    CAS  PubMed  Google Scholar 

  14. Sater, R. A., Sandel, P. C. & Monroe, J. G. B cell receptor-induced apoptosis in primary transitional murine B cells: signaling requirements and modulation by T cell help. Int. Immunol. 10, 1673–1682 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Meyer-Bahlburg, A., Andrews, S. F., Yu, K. O., Porcelli, S. A. & Rawlings, D. J. Characterization of a late transitional B cell population highly sensitive to BAFF-mediated homeostatic proliferation. J. Exp. Med. 205, 155–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kenny, J. J., O'Connell, C., Sieckmann, D. G., Fischer, R. T. & Longo, D. L. Selection of antigen-specific, idiotype-positive B cells in transgenic mice expressing a rearranged M167-μ heavy chain gene. J. Exp. Med. 174, 1189–1201 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Zikherman, J., Parameswaran, R. & Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489, 160–164 (2012). Using an in vivo reporter of BCR signalling, this paper describes how BCR engagement with self-ligand occurs across a continuum during transitional B cell development, thereby shaping peripheral B cell tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12, 39–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Burn, G. L., Svensson, L., Sanchez-Blanco, C., Saini, M. & Cope, A. P. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett. 585, 3689–3698 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Rawlings, D. J., Dai, X. & Buckner, J. H. The role of PTPN22 risk variant in the development of autoimmunity: finding common ground between mouse and human. J. Immunol. 194, 2977–2984 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Kyogoku, C. et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet. 75, 504–507 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bottini, N. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Habib, T. et al. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J. Immunol. 188, 487–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Menard, L. et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest. 121, 3635–3644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rieck, M. et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J. Immunol. 179, 4704–4710 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Dai, X. et al. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J. Clin. Invest. 123, 2024–2036 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, J. et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat. Genet. 43, 902–907 (2011). Reference 25 describes how the expression of a common autoimmunity-associated PTPN22 variant interferes with human B cell selection checkpoints, whereas references 28 and 29 report the phenotype of independently generated knock-in models of the homologous mouse gene. In combination, these studies demonstrate that the R620W polymorphism in PTPN22 promotes autoimmunity, in part through effects on B cell developmental selection and peripheral activation responses.

    Article  CAS  PubMed  Google Scholar 

  30. Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Stadanlick, J. E. et al. Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling. Nat. Immunol. 9, 1379–1387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, S. H. & Cancro, M. P. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J. Immunol. 170, 5820–5823 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Schweighoffer, E. et al. The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway. Immunity 38, 475–488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jellusova, J. et al. Context-specific BAFF-R signaling by the NF-κB and PI3K pathways. Cell Rep. 5, 1022–1035 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Hobeika, E. et al. CD19 and BAFF-R can signal to promote B-cell survival in the absence of Syk. EMBO J. 34, 925–939 (2015). References 31, 33, 34 and 35 dissect the complex biochemical crosstalk between the BCR and BAFFR pathways that regulates context-dependent pro-survival programmes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindsley, R. C., Thomas, M., Srivastava, B. & Allman, D. Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood 109, 2521–2528 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Cariappa, A., Chase, C., Liu, H., Russell, P. & Pillai, S. Naive recirculating B cells mature simultaneously in the spleen and bone marrow. Blood 109, 2339–2345 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Rowland, S. L., Leahy, K. F., Halverson, R., Torres, R. M. & Pelanda, R. BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J. Immunol. 185, 4570–4581 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Mackay, F. et al. Mice transgenic for Baff develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stohl, W. et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 48, 3475–3486 (2003).

    Article  PubMed  Google Scholar 

  41. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004). References 42 and 43 describe how increased serum BAFF levels can rescue low-affinity self-reactive B cells from negative selection during peripheral B cell development.

    Article  CAS  PubMed  Google Scholar 

  44. Hondowicz, B. D. et al. The role of BLyS/BLyS receptors in anti-chromatin B cell regulation. Int. Immunol. 19, 465–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Rawlings, D. J., Schwartz, M. A., Jackson, S. W. & Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 12, 282–294 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Isnardi, I. et al. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity 29, 746–757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuraoka, M. et al. BCR and endosomal TLR signals synergize to increase AID expression and establish central B cell tolerance. Cell Rep. 18, 1627–1635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meffre, E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann. NY Acad. Sci. 1246, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Mills, R. E. et al. Unbiased modifier screen reveals that signal strength determines the regulatory role murine TLR9 plays in autoantibody production. J. Immunol. 194, 3675–3686 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Becker-Herman, S. et al. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. J. Exp. Med. 208, 2033–2042 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pala, F. et al. Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott–Aldrich syndrome patients. J. Clin. Invest. 125, 3941–3951 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kolhatkar, N. S. et al. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott–Aldrich syndrome. J. Exp. Med. 212, 1663–1677 (2015). Using WAS deficiency as a model of humoral autoimmunity, references 50 and 52 reveal how modestly enhanced BCR and TLR signalling can both promote the positive selection of self-reactive transitional B cells into the mature repertoire and trigger autoimmune GC responses, effects that result in B cell-driven systemic autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khan, W. N. et al. Impaired B cell maturation in mice lacking Bruton's tyrosine kinase (Btk) and CD40. Int. Immunol. 9, 395–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Lesley, R., Kelly, L. M., Xu, Y. & Cyster, J. G. Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc. Natl Acad. Sci. USA 103, 10717–10722 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schwartz, M. A., Kolhatkar, N. S., Thouvenel, C., Khim, S. & Rawlings, D. J. CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. J. Immunol. 193, 3492–3502 (2014). Reference 54 demonstrates that naive CD4+ T cells augment the survival of developing B cells through CD40L–CD40 interactions, and reference 55 expands on this idea to show how CD40 signalling broadens the naive BCR repertoire.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Castigli, E. et al. CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc. Natl Acad. Sci. USA 91, 12135–12139 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Castigli, E., Young, F., Carossino, A. M., Alt, F. W. & Geha, R. S. CD40 expression and function in murine B cell ontogeny. Int. Immunol. 8, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Kinnunen, T. et al. Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells. Blood 121, 1595–1603 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003). This seminal paper demonstrates that >50% of immature B cells in humans exhibit self-reactivity and that these autoreactive specificities are partially removed from the mature naive repertoire at two discrete checkpoints during B cell development.

    Article  CAS  PubMed  Google Scholar 

  60. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, H., Benoist, C. & Mathis, D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc. Natl Acad. Sci. USA 107, 4658–4663 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mahevas, M., Michel, M., Weill, J. C. & Reynaud, C. A. Long-lived plasma cells in autoimmunity: lessons from B-cell depleting therapy. Front. Immunol. 4, 494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002). This study provides the first demonstration that SHM and class-switch recombination of autoreactive B cells can occur outside of GCs within extrafollicular foci in the spleen.

    Article  PubMed  Google Scholar 

  64. Groom, J. R. et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J. Exp. Med. 204, 1959–1971 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jacobi, A. M. et al. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 48, 1332–1342 (2003).

    Article  PubMed  Google Scholar 

  66. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Hou, B. et al. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34, 375–384 (2011). This study demonstrates that the physical context of antigen and adjuvant influences the ability of TLR ligands to enhance antibody formation and shows that B cell-intrinsic MYD88 signalling is crucial for antiviral responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nickerson, K. M. et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J. Immunol. 184, 1840–1848 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Odegard, J. M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205, 2873–2886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Christensen, S. R. et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202, 321–331 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Yasuda, K. et al. Murine dendritic cell type I IFN production induced by human IgG–RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production. J. Immunol. 178, 6876–6885 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Teichmann, L. L., Schenten, D., Medzhitov, R., Kashgarian, M. & Shlomchik, M. J. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity 38, 528–540 (2013). References 64, 68, 74 and 76 highlight the crucial importance of integrated BCR and TLR signalling in promoting B cell activation and antinuclear antibody production in SLE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thompson, J. S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. He, B. et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat. Immunol. 11, 836–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. von Bulow, G. U., van Deursen, J. M. & Bram, R. J. Regulation of the T-independent humoral response by TACI. Immunity 14, 573–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Figgett, W. A. et al. Deleting the BAFF receptor TACI protects against systemic lupus erythematosus without extensive reduction of B cell numbers. J. Autoimmun. 61, 9–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Jacobs, H. M. et al. Cutting edge: BAFF promotes autoantibody production via TACI-dependent activation of transitional B cells. J. Immunol. 196, 3525–3531 (2016). References 80 and 81 highlight the crucial importance of B cell-intrinsic TACI signalling in the generation of class-switched autoantibodies in mice that overexpress BAFF.

    Article  CAS  PubMed  Google Scholar 

  82. Carter, L. M., Isenberg, D. A. & Ehrenstein, M. R. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 65, 2672–2679 (2013).

    CAS  PubMed  Google Scholar 

  83. Cambridge, G. et al. Circulating levels of B lymphocyte stimulator in patients with rheumatoid arthritis following rituximab treatment: relationships with B cell depletion, circulating antibodies, and clinical relapse. Arthritis Rheum. 54, 723–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Daikeler, T. & Tyndall, A. Autoimmunity following haematopoietic stem-cell transplantation. Best Pract. Res. Clin. Haematol. 20, 349–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. MacLennan, I. & Vinuesa, C. Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses. Immunity 17, 235–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Vinuesa, C. G., Sanz, I. & Cook, M. C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 9, 845–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Wellmann, U. et al. The evolution of human anti-double-stranded DNA autoantibodies. Proc. Natl Acad. Sci. USA 102, 9258–9263 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jackson, S. W. et al. Opposing impact of B cell-intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J. Immunol. 192, 4525–4532 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Hua, Z. et al. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. J. Immunol. 192, 875–885 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Jackson, S. W. et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J. Exp. Med. 213, 733–750 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 6, 205–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Sullivan, K. E., Mullen, C. A., Blaese, R. M. & Winkelstein, J. A. A multiinstitutional survey of the Wiskott–Aldrich syndrome. J. Pediatr. 125, 876–885 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Crestani, E. et al. Broad spectrum of autoantibodies in patients with Wiskott–Aldrich syndrome and X-linked thrombocytopenia. J. Allergy Clin. Immunol. 136, 1401–1404.e3 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Recher, M. et al. B cell-intrinsic deficiency of the Wiskott–Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood 119, 2819–2828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lamagna, C., Hu, Y., DeFranco, A. L. & Lowell, C. A. B cell-specific loss of Lyn kinase leads to autoimmunity. J. Immunol. 192, 919–928 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Xu, Y., Harder, K. W., Huntington, N. D., Hibbs, M. L. & Tarlinton, D. M. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 22, 9–18 (2005).

    PubMed  Google Scholar 

  97. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13BLK and ITGAMITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Lu, R. et al. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun. 10, 397–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Surolia, I. et al. Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature 466, 243–247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Soni, C. et al. Distinct and synergistic roles of FcγRIIB deficiency and 129 strain-derived SLAM family proteins in the development of spontaneous germinal centers and autoimmunity. J. Autoimmun. 63, 31–46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bygrave, A. E. et al. Spontaneous autoimmunity in 129 and C57BL/6 mice—implications for autoimmunity described in gene-targeted mice. PLoS Biol. 2, E243 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Corneth, O. B. et al. Enhanced expression of Bruton's tyrosine kinase in B cells drives systemic autoimmunity by disrupting T cell homeostasis. J. Immunol. 197, 58–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of β-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dahan, K. et al. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up. J. Am. Soc. Nephrol. 28, 348–358 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ahmed, A. R., Spigelman, Z., Cavacini, L. A. & Posner, M. R. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N. Engl. J. Med. 355, 1772–1779 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Hauser, S. L. et al. B-Cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Beck, L. H. Jr et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1543–1550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pendergraft, W. F. et al. Long-term maintenance therapy using rituximab-induced continuous B-cell depletion in patients with ANCA vasculitis. Clin. J. Am. Soc. Nephrol. 9, 736–744 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cornec, D., Avouac, J., Youinou, P. & Saraux, A. Critical analysis of rituximab-induced serological changes in connective tissue diseases. Autoimmun. Rev. 8, 515–519 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Chan, O. T., Hannum, L. G., Haberman, A. M., Madaio, M. P. & Shlomchik, M. J. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J. Exp. Med. 189, 1639–1648 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chan, O. & Shlomchik, M. J. A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J. Immunol. 160, 51–59 (1998).

    CAS  PubMed  Google Scholar 

  115. Wong, F. S. et al. Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes 53, 2581–2587 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Noorchashm, H. et al. I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet β cells of nonobese diabetic mice. J. Immunol. 163, 743–750 (1999).

    CAS  PubMed  Google Scholar 

  117. Molnarfi, N. et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J. Exp. Med. 210, 2921–2937 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Giles, J. R., Kashgarian, M., Koni, P. A. & Shlomchik, M. J. B cell-specific MHC class II deletion reveals multiple nonredundant roles for B cell antigen presentation in murine lupus. J. Immunol. 195, 2571–2579 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Wan, X., Thomas, J. W. & Unanue, E. R. Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites. J. Exp. Med. 213, 967–978 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ehlers, M., Fukuyama, H., McGaha, T. L., Aderem, A. & Ravetch, J. V. TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J. Exp. Med. 203, 553–561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Soni, C. et al. B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. J. Immunol. 193, 4400–4414 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Walsh, E. R. et al. Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc. Natl Acad. Sci. USA 109, 16276–16281 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Shen, N. et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 107, 15838–15843 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Garcia-Ortiz, H. et al. Association of TLR7 copy number variation with susceptibility to childhood-onset systemic lupus erythematosus in Mexican population. Ann. Rheum. Dis. 69, 1861–1865 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Kawasaki, A. et al. TLR7 single-nucleotide polymorphisms in the 3′ untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study. Arthritis Res. Ther. 13, R41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nickerson, K. M. et al. TLR9 promotes tolerance by restricting survival of anergic anti-DNA B cells, yet is also required for their activation. J. Immunol. 190, 1447–1456 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Linterman, M. A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008). References 129–131 demonstrate the crucial role of IL-21 in promoting GC formation by facilitating the differentiation of T FH cells and GC B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA 106, 1518–1523 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ozaki, K. et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol. 173, 5361–5371 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Dolff, S. et al. Increase in IL-21 producing T-cells in patients with systemic lupus erythematosus. Arthritis Res. Ther. 13, R157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rankin, A. L. et al. IL-21 receptor is required for the systemic accumulation of activated B and T lymphocytes in MRL/MpJ-Faslpr/lpr/J mice. J. Immunol. 188, 1656–1667 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Bubier, J. A. et al. Treatment of BXSB-Yaa mice with IL-21R–Fc fusion protein minimally attenuates systemic lupus erythematosus. Ann. NY Acad. Sci. 1110, 590–601 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. McPhee, C. G. et al. IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. J. Immunol. 191, 4581–4588 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Kopf, M., Herren, S., Wiles, M. V., Pepys, M. B. & Kosco-Vilbois, M. H. Interleukin 6 influences germinal center development and antibody production via a contribution of C3 complement component. J. Exp. Med. 188, 1895–1906 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Karnowski, A. et al. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J. Exp. Med. 209, 2049–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Poholek, A. C. et al. In vivo regulation of Bcl6 and T follicular helper cell development. J. Immunol. 185, 313–326 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Linker-Israeli, M. et al. Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J. Immunol. 147, 117–123 (1991).

    CAS  PubMed  Google Scholar 

  144. Jain, S. et al. Interleukin 6 accelerates mortality by promoting the progression of the systemic lupus erythematosus-like disease of BXSB.Yaa mice. PLoS ONE 11, e0153059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vanden Bush, T. J. & Bishop, G. A. TLR7 and CD40 cooperate in IL-6 production via enhanced JNK and AP-1 activation. Eur. J. Immunol. 38, 400–409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. de Valle, E. et al. NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells. J. Exp. Med. 213, 621–641 (2016). Reference 140 demonstrates that combined deletion of Il6 and Il21 prevents antiviral GC responses, which are partially restored by B cell-derived IL-6. Consistent with roles for B cell-derived IL-6 production in autoimmunity, reference 147 shows that spontaneous GC formation in the setting of B cell-intrinsic Nfkb1 deletion correlates with IL-6 production by activated B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Goenka, R. et al. Local BLyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation. J. Exp. Med. 211, 45–56 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wensveen, F. M., Slinger, E., van Attekum, M. H., Brink, R. & Eldering, E. Antigen-affinity controls pre-germinal center B cell selection by promoting Mcl-1 induction through BAFF receptor signaling. Sci. Rep. 6, 35673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kirou, K. A. et al. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Deng, Y. & Tsao, B. P. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat. Rev. Rheumatol. 6, 683–692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kiefer, K., Oropallo, M. A., Cancro, M. P. & Marshak-Rothstein, A. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol. 90, 498–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Haas, C., Ryffel, B. & Le Hir, M. IFN-γ is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J. Immunol. 158, 5484–5491 (1997).

    CAS  PubMed  Google Scholar 

  156. Schwarting, A., Wada, T., Kinoshita, K., Tesch, G. & Kelley, V. R. IFN-γ receptor signaling is essential for the initiation, acceleration, and destruction of autoimmune kidney disease in MRL-Faslpr mice. J. Immunol. 161, 494–503 (1998).

    CAS  PubMed  Google Scholar 

  157. Lee, S. K. et al. Interferon-γ excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity 37, 880–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Domeier, P. P. et al. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J. Exp. Med. 213, 715–732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016). References 90, 157 and 158 demonstrate the crucial importance of IFN γ signalling in promoting spontaneous GC formation in mouse lupus and show that it acts through the cell-intrinsic induction of the differentiation of T FH cells and GC B cells. Reference 159 corroborated the importance of this pro-inflammatory cytokine in human SLE by demonstrating that increased serum IFN γ levels correlate with the first appearance of serum autoantibodies years prior to a clinical diagnosis of SLE.

    Article  CAS  PubMed  Google Scholar 

  160. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Pihoker, C., Gilliam, L. K., Hampe, C. S. & Lernmark, A. Autoantibodies in diabetes. Diabetes 54 (Suppl. 2), S52–S61 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Deane, K. D., Norris, J. M. & Holers, V. M. Preclinical rheumatoid arthritis: identification, evaluation, and future directions for investigation. Rheum. Dis. Clin. North Am. 36, 213–241 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02603146 (2017).

  165. Qi, H. T follicular helper cells in space-time. Nat. Rev. Immunol. 16, 612–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Craft, J. E. Follicular helper T cells in immunity and systemic autoimmunity. Nat. Rev. Rheumatol. 8, 337–347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Raj, T. et al. Common risk alleles for inflammatory diseases are targets of recent positive selection. Am. J. Hum. Genet. 92, 517–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ramos, P. S., Shedlock, A. M. & Langefeld, C. D. Genetics of autoimmune diseases: insights from population genetics. J. Hum. Genet. 60, 657–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gomez, L. M., Anaya, J. M. & Martin, J. Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum. Immunol. 66, 1242–1247 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Clatworthy, M. R. et al. Systemic lupus erythematosus-associated defects in the inhibitory receptor FcγRIIb reduce susceptibility to malaria. Proc. Natl Acad. Sci. USA 104, 7169–7174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hartley, S. B. et al. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 353, 765–769 (1991).

    Article  CAS  PubMed  Google Scholar 

  172. Nemazee, D. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol. 6, 728–740 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Cambier, J. C., Gauld, S. B., Merrell, K. T. & Vilen, B. J. B-Cell anergy: from transgenic models to naturally occurring anergic B cells? Nat. Rev. Immunol. 7, 633–643 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gaudin, E. et al. Positive selection of B cells expressing low densities of self-reactive BCRs. J. Exp. Med. 199, 843–853 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cyster, J. G. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381, 325–328 (1996).

    Article  CAS  PubMed  Google Scholar 

  176. Julien, S., Soulas, P., Garaud, J. C., Martin, T. & Pasquali, J. L. B cell positive selection by soluble self-antigen. J. Immunol. 169, 4198–4204 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Gu, H., Tarlinton, D., Muller, W., Rajewsky, K. & Forster, I. Most peripheral B cells in mice are ligand selected. J. Exp. Med. 173, 1357–1371 (1991).

    Article  CAS  PubMed  Google Scholar 

  178. Levine, M. H. et al. A B-cell receptor-specific selection step governs immature to mature B cell differentiation. Proc. Natl Acad. Sci. USA 97, 2743–2748 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Richardson, C. et al. Molecular basis of 9G4 B cell autoreactivity in human systemic lupus erythematosus. J. Immunol. 191, 4926–4939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Jenks, S. A. et al. 9G4+ autoantibodies are an important source of apoptotic cell reactivity associated with high levels of disease activity in systemic lupus erythematosus. Arthritis Rheum. 65, 3165–3175 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pascual, V. et al. Nucleotide sequence analysis of the V regions of two IgM cold agglutinins. Evidence that the VH4-21 gene segment is responsible for the major cross-reactive idiotype. J. Immunol. 146, 4385–4391 (1991).

    CAS  PubMed  Google Scholar 

  183. Thompson, K. M. et al. Human monoclonal antibodies against blood group antigens preferentially express a VH4-21 variable region gene-associated epitope. Scand. J. Immunol. 34, 509–518 (1991).

    Article  CAS  PubMed  Google Scholar 

  184. Pugh-Bernard, A. E. et al. Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J. Clin. Invest. 108, 1061–1070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cappione, A. et al. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 115, 3205–3216 (2005). References 67, 180 and 183–185 describe important roles of B cells that express the intrinsically autoreactive VH4-34 heavy chain in the pathogenesis in SLE. Reference 67 also demonstrates that a substantial proportion of VH4-34+ antibody-secreting cells are derived from recently-activated, clonally-expanded B cells, which implicates ongoing B cell activation outside the GC in the pathogenesis of SLE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Isenberg, D., Spellerberg, M., Williams, W., Griffiths, M. & Stevenson, F. Identification of the 9G4 idiotope in systemic lupus erythematosus. Br. J. Rheumatol. 32, 876–882 (1993).

    Article  CAS  PubMed  Google Scholar 

  187. Stevenson, F. K. et al. Utilization of the VH4-21 gene segment by anti-DNA antibodies from patients with systemic lupus erythematosus. J. Autoimmun. 6, 809–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  188. van Vollenhoven, R. F. et al. VH4-34 encoded antibodies in systemic lupus erythematosus: a specific diagnostic marker that correlates with clinical disease characteristics. J. Rheumatol. 26, 1727–1733 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Heart, Lung, and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (NIH) under award numbers R01HL075453 (to D.J.R), R01A1084457 (to D.J.R.), R01A1071163 (to D.J.R.), DP3DK097672 (to D.J.R.), DP3DK111802 (to D.J.R.), DP3DK097672-01S1 (to G.M.), T32AI106677 (to M.W.-D.) and K08AI112993 (to S.W.J.). The content of this Review is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Additional support of the work was provided by the Benaroya Family Gift Fund (to D.J.R.); a Howard Hughes Medical Institute–NIH Molecular Medicine Training Grant (to G.M.); the American College of Rheumatology Research and Education Foundation Rheumatology Scientist Development Award and Career Development K Supplement (to S.W.J.); an Arthritis National Research Foundation grant (to S.W.J.); a Novel Research Grant from the Lupus Research Alliance (to S.W.J.); and the Arnold Lee Smith Endowed Professorship for Research Faculty Development (to S.W.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Rawlings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

CD40

A tumour necrosis factor receptor superfamily member expressed by antigen-presenting cells that transmits activation signals in response to CD40 ligand (CD40L). Binding of CD40 on transitional B cells to CD40L on naive CD4+ T cells activates both the classical and alternative nuclear factor-κB pathways to promote cell survival.

Humoral autoimmunity

Causes a broad range of autoimmune diseases that are characterized by the production of pathogenic antibodies. These disorders frequently share risk alleles. For example, the R620W polymorphism in PTPN22 (which encodes protein tyrosine phosphatase nonreceptor 22) is associated with an increased risk of developing several diseases, including rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, Hashimoto thyroiditis, Addison disease and others.

Extrafollicular B cell activation

In response to infectious challenge, B cell receptor signalling induces the rapid division and differentiation of B cells into short-lived, antibody-secreting plasmablasts at the T cell zone–red pulp border. This extrafollicular B cell response can occur in a T cell-independent or T cell-dependent manner, and is the predominant source of the protective antibodies that are generated early during an infection.

Germinal centre

(GC). A specialized lymphoid structure in which activated B cells cycle between anatomically distinct dark zones and light zones as they undergo iterative rounds of affinity selection, which ultimately leads to the generation of both antigen-specific memory B cells and high-affinity, long-lived plasma cells.

B cell-activating factor receptor

(BAFFR). A tumour necrosis factor receptor superfamily member that promotes the survival and maturation of B cells. Following ligation by B cell-activating factor (BAFF), BAFFR mainly induces the alternative nuclear factor-κB pathway to promote pro-survival signals. Mice that are deficient in BAFF or BAFFR have a block in B cell development at the transitional type 1 stage.

Systemic lupus erythematosus

(SLE). A chronic, multisystem inflammatory disease that is characterized by high-titre, class-switched autoantibodies against nuclear antigens; these autoantibodies are invariably present before disease onset and ultimately lead to the formation of immune complexes that precipitate systemic and/or organ-targeted injury.

Type 1 diabetes

(T1D). An autoimmune disease that is characterized by the destruction of insulin-producing pancreatic islet cells. Although T cells are crucial in this process, high-affinity, somatically mutated autoantibodies that target pancreatic islet antigens are present before disease onset, which emphasizes the importance of B cells in the pathogenesis of T1D.

Rheumatoid arthritis

(RA). A chronic, autoimmune disease that is characterized by symmetrical polyarticular arthritis and the production of rheumatoid factor and autoantibodies against cyclic citrullinated peptides; the appearance of rheumatoid factor and autoantibodies precedes clinical disease, implicating altered B cell responses early in the disease process.

Transmembrane activator and CAML interactor

(TACI). A tumour necrosis factor receptor family member that activates the classical nuclear factor-κB (NF-κB) pathway in response to ligation by multimeric B cell-activating factor (BAFF) or a proliferation-inducing ligand (APRIL; also known as TNFSF13) on developing and mature B cells. TACI signalling promotes T cell-independent antibody responses, and a subset of patients with common variable immunodeficiency have TACI mutations. TACI-deficient animals develop B cell hyperplasia, probably owing to increased serum BAFF levels.

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome

(IPEX syndrome). A syndrome caused by a lack of functional regulatory T cells that is due to mutations in FOXP3 (which encodes forkhead box P3). It is characterized by severe autoimmunity driven by both activated effector T cells and multiple autoantibodies.

MRL.Faslpr

A strain of mouse generated by breeding multiple mouse strains to select those that exhibit features of lupus-like disease, including lethal autoimmunity and high-titre antinuclear antibodies. The lpr mutation is an autosomal-recessive mutation in Fas, which results in lymphoproliferation and accelerated autoimmunity.

NZB/W mice

F1 mice that are hybrids of NZB (New Zealand black) and NZW (New Zealand white) strains. They develop class-switched antinuclear antibodies, systemic inflammation and immune-complex-mediated glomerulonephritis. Autoimmune susceptibility loci in this strain include polymorphisms in Fcgr2b (which encodes Fcγ receptor IIB) and in signalling lymphocyte activation molecule (SLAM) family genes.

Non-obese diabetic mouse

(NOD mouse). A polygenic animal model of type 1 diabetes characterized by spontaneous leukocyte infiltration within the pancreatic islets and by insulin-dependent diabetes, with a bias towards accelerated disease in female mice. Disease in this model depends on both B cell and T cell activation.

Tlr7-transgenic mice

A mouse model of lupus generated by transgenic overexpression of the gene that encodes Toll-like receptor 7 (TLR7), which results in systemic autoimmunity and high titres of RNA-specific autoantibodies. The phenotype of Tlr7-transgenic mice partially mimics that of lupus-prone strains that express duplicated Tlr7 through the Y-chromosome-linked autoimmune accelerator (Yaa) mutation.

BXSB-Yaa

Lupus-prone male mice that develop accelerated disease due to Y-chromosome-linked autoimmune accelerator (Yaa), a translocation of the telomeric end of the X chromosome to the Y chromosome, which results in the duplication of several genes, including Tlr7 (which encodes Toll-like receptor 7).

Roquin san/san

A strain of mice with an N-ethyl-N-nitrosourea (ENU)-driven 'san' mutation in Roquin (which encodes a RING-type ubiquitin ligase; also known as Rc3h1), resulting in a lupus-like disease that is characterized by spontaneous germinal centre formation, high-affinity double-stranded DNA-specific antibodies, autoimmune thrombocytopenia and immune-complex-mediated glomerulonephritis.

B6.Sle1b

A strain of C57BL/6 mice that has the Sle1b sublocus derived from lupus-prone NZW mice. The Sle1b sublocus contains signalling lymphocyte activation molecule (SLAM) family genes with polymorphisms that are involved in antinuclear antibody production, B cell and T cell activation, and spontaneous germinal centre formation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawlings, D., Metzler, G., Wray-Dutra, M. et al. Altered B cell signalling in autoimmunity. Nat Rev Immunol 17, 421–436 (2017). https://doi.org/10.1038/nri.2017.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.24

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing