Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maintaining differentiated cellular identity

Key Points

  • Reprogramming studies have shown that somatic differentiated cells retain plasticity, but how their identities are stably maintained under normal conditions is not well-understood.

  • Cell fusion experiments have indicated that differentiated cell identity is maintained by continuously expressed instructive regulators.

  • Expression of transcription factors in combination can lead to lineage conversions without passage via immature progenitor states.

  • Differentiated cell identity may be propagated by a simple transcription factor regulatory logic in lower animals and by more complex combinatorial coding in higher animal cells.

  • Conditional gene targeting of key developmental transcription factors in mature cells can, in some cases, lead to dramatic cell lineage switching. Several other examples reveal relatively minor phenotypes.

  • The stability of intrinsic transcription factor networks may contribute to the stability of the differentiated state.

  • Additional mechanisms, including stable and persistent silencing of alternative cell lineages, may also contribute to the stability of the differentiated cell identity.

  • Differences in stability of differentiated cells may reflect different physiological requirements to retain plasticity in some, but not all, types of mature cells.

  • Interference with transcription factor mechanisms that are involved in maintaining cell identity may be associated with diseases such as cancer.

Abstract

Various studies have demonstrated that somatic differentiated cells can be reprogrammed into other differentiated states or into pluripotency, thus showing that the differentiated cellular state is not irreversible. These findings have generated intense interest in the process of reprogramming and in mechanisms that govern the pluripotent state. However, the realization that differentiated cells can be triggered to switch to considerably different lineages also emphasizes that we need to understand how the identity of mature cells is normally maintained. Here we review recent studies on how the differentiated state is controlled at the transcriptional level and discuss how new insights have begun to elucidate mechanisms underlying the stable maintenance of mature cell identities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Feedforward regulatory cascades of transcription factors functioning in cell development and maintenance.
Figure 2: Guardians of differentiated cell identities.
Figure 3: Models for how transcription factor networks might control the stability of the differentiated state.
Figure 4: Dependency of instructive factors in the regulation of the chromatin state is distinct for active versus repressed genes.

Similar content being viewed by others

References

  1. Spemann, H. Embryonic Development and Induction (Yale Univ. Press, 1938).

  2. Gurdon, J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–640 (1962).

    CAS  PubMed  Google Scholar 

  3. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Hanna, J. H., Saha, K. & Jaenisch, R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508–525 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Eminli, S. et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nature Genet. 41, 968–976 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Pasque, V., Jullien, J., Miyamoto, K., Halley-Stott, R. P. & Gurdon, J. B. Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet. 27, 516–525 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Holmberg, J. et al. Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. PLoS ONE 6, e18454 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Slack, J. M. W. Metaplasia and transdifferentiation: from pure biology to the clinic. Nature Rev. Mol. Cell Biol. 8, 369–378 (2007).

    Article  CAS  Google Scholar 

  13. Harris, H. & Watkins, J. F. Hybrid cells derived from mouse and man: artificial heterokaryons of mammalian cells from different species. Nature 205, 640–646 (1965).

    Article  CAS  PubMed  Google Scholar 

  14. Bolund, L., Ringertz, N. R. & Harris, H. Changes in the cytochemical properties of erythrocyte nuclei reactivated by cell fusion. J. Cell Sci. 4, 71–87 (1969).

    CAS  PubMed  Google Scholar 

  15. Blau, H. M., Chiu, C. P. & Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32, 1171–1180 (1983). This was the first study using heterokaryons to show that cellular regulators in one cell type can enforce cell-type-specific gene expression in another cell.

    Article  CAS  PubMed  Google Scholar 

  16. Blau, H. M. et al. Plasticity of the differentiated state. Science 230, 758–766 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Wright, W. E. Control of differentiation in heterokaryons and hybrids involving differentiation-defective myoblast variants. J. Cell Biol. 98, 436–443 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Miller, S. C., Pavlath, G. K., Blakely, B. T. & Blau, H. M. Muscle cell components dictate hepatocyte gene expression and the distribution of the Golgi apparatus in heterokaryons. Genes Dev. 2, 330–340 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Palermo, A. et al. Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional. FASEB J. 23, 1431–1440 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Terranova, R., Pereira, C. F., Du Roure, C., Merkenschlager, M. & Fisher, A. G. Acquisition and extinction of gene expression programs are separable events in heterokaryon reprogramming. J. Cell Sci. 119, 2065–2072 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, F., Pomerantz, J. H., Sen, G., Palermo, A. T. & Blau, H. M. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc. Natl Acad. Sci. USA 104, 4395–4400 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Blau, H. M. & Baltimore, D. Differentiation requires continuous regulation. J. Cell Biol. 112, 781–783 (1991). This is an insightful review that, following on from early reprogramming experiments, suggested that the differentiated state needs to be continuously instructed by cell intrinsic regulators.

    Article  CAS  PubMed  Google Scholar 

  24. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Kulessa, H., Frampton, J. & Graf, T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev. 9, 1250–1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Visvader, J. E., Elefanty, A. G., Strasser, A. & Adams, J. M. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J. 11, 4557–4564 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J. F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).

    CAS  PubMed  Google Scholar 

  31. Simeone, A., Puelles, E. & Acampora, D. The Otx family. Curr. Opin. Genet. Dev. 12, 409–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124, 393–405 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Panman, L. et al. Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells. Cell Stem Cell 8, 663–675 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet. 8, 450–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Davidson, E. H. & Levine, M. S. Properties of developmental gene regulatory networks. Proc. Natl Acad. Sci. USA 105, 20063–20066 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476, 224–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kim, J. et al. Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9, 413–419 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Pfisterer, U. et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl Acad. Sci. USA 108, 10343–10348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390–393 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Feng, R. et al. PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proc. Natl Acad. Sci. USA 105, 6057–6062 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hobert, O. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc. Natl Acad. Sci. USA 105, 20067–20071 (2008). This is an excellent review that describes genetic studies in C. elegans and provides conceptual ideas of how cellular identity is maintained.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang, S., Johnston, R. J. & Hobert, O. A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. Genes Dev. 17, 2123–2137 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Etchberger, J. F. et al. The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. Genes Dev. 21, 1653–1674 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Uchida, O., Nakano, H., Koga, M. & Ohshima, Y. The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons. Development 130, 1215–1224 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Altun-Gultekin, Z. et al. A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development 128, 1951–1969 (2001).

    CAS  PubMed  Google Scholar 

  49. Duggan, A., Ma, C. & Chalfie, M. Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. Development 125, 4107–4119 (1998).

    CAS  PubMed  Google Scholar 

  50. Wenick, A. S. & Hobert, O. Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Dev. Cell 6, 757–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Xue, D., Tu, Y. & Chalfie, M. Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. Science 261, 1324–1328 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y. et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Kratsios, P., Stolfi, A., Levine, M. & Hobert, O. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nature Neurosci. 15, 205–214 (2012).

    Article  CAS  Google Scholar 

  54. Corbo, J. C. et al. CRX ChIP–seq reveals the cis-regulatory architecture of mouse photoreceptors. Genome Res. 20, 1512–1525 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Flames, N. & Hobert, O. Gene regulatory logic of dopamine neuron differentiation. Nature 458, 885–889 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wang, S. & Turner, E. E. Expression of dopamine pathway genes in the midbrain is independent of known ETS transcription factor activity. J. Neurosci. 30, 9224–9227 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Smidt, M. P. & Burbach, J. P. H. How to make a mesodiencephalic dopaminergic neuron. Nature Rev. Neurosci. 8, 21–32 (2007).

    Article  CAS  Google Scholar 

  58. Kadkhodaei, B. et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J. Neurosci. 29, 15923–15932 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Baumgardt, M., Miguel-Aliaga, I., Karlsson, D., Ekman, H. & Thor, S. Specification of neuronal identities by feedforward combinatorial coding. PLoS Biol. 5, e37 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Eade, K. T., Fancher, H. A., Ridyard, M. S. & Allan, D. W. Developmental transcriptional networks are required to maintain neuronal subtype identity in the mature nervous system. PLoS Genet. 8, e1002501 (2012). References 59 and 60 provide powerful examples demonstrating how transcription factor codes are crucially instructive both in development and for maintenance of cellular identities in D. melanogaster.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Metzger, D., & Chambon, P. Site- and time-specific gene targeting in the mouse. Methods 24, 71–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Ghosh, H. S., Cisse, B., Bunin, A., Lewis, K. L. & Reizis, B. Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33, 905–916 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Johnson, N. C. et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 22, 3282–3291 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Uhlenhaut, N. H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Li, P. et al. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329, 85–89 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Williams, L. M. & Rudensky, A. Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature Immunol. 8, 277–284 (2007).

    Article  CAS  Google Scholar 

  68. Wan, Y. Y. & Flavell, R. A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007). References 62–68 are striking studies that use conditional knockout of key transcription factors in differentiated cells and demonstrate how these factors are required to maintain differentiated cellular identity and protect against reprogramming. References 62, 67 and 68 also show how these effects may be associated with disease such as cancer and autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  69. Matson, C. K. et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101–104 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. Science 297, 110–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. McManus, S. et al. The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells. EMBO J. 30, 2388–2404 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Schmidt, D. et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131, 933–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Uda, M. et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet. 13, 1171–1181 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Masuyama, H. et al. Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosome Res. 20, 163–176 (2011).

    Article  CAS  Google Scholar 

  77. Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010). This is an interesting study suggesting that the plasticity seen in certain differentiated cells may facilitate a physiological cell replacement mechanism.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Cao, Y. et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev. Cell 18, 662–674 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Schebesta, A. et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 27, 49–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Odom, D. T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Song, N.-N. et al. Adult raphe-specific deletion of lmx1b leads to central serotonin deficiency. PLoS ONE 6, e15998 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Zhao, Z.-Q. et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci. 26, 12781–12788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E. S. The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10348–10356 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ding, Y. Q. et al. Lmx1b is essential for the development of serotonergic neurons. Nature Neurosci. 6, 933–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, C. et al. Pet-1 is required across different stages of life to regulate serotonergic function. Nature Neurosci. 13, 1190–1198 (2010). References 58, 83 and 88 provide clear examples showing increasingly mild phenotypes when transcription factors are ablated at adult neuronal stages.

    Article  CAS  PubMed  Google Scholar 

  89. Gao, N. et al. Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev. 22, 3435–3448 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Lee, C. S., Sund, N. J., Behr, R., Herrera, P. L. & Kaestner, K. H. Foxa2 is required for the differentiation of pancreatic α-cells. Dev. Biol. 278, 484–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Friedman, J. R. & Kaestner, K. H. The Foxa family of transcription factors in development and metabolism. Cell. Mol. Life Sci. 63, 2317–2328 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Gao, N. et al. Foxa1 and Foxa2 maintain the metabolic and secretory features of the mature β-cell. Mol. Endocrinol. 24, 1594–1604 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Parviz, F. et al. Hepatocyte nuclear factor 4α controls the development of a hepatic epithelium and liver morphogenesis. Nature Genet. 34, 292–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Li, J., Ning, G. & Duncan, S. A. Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes Dev. 14, 464–474 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Hayhurst, G. P., Lee, Y. H., Lambert, G., Ward, J. M. & Gonzalez, F. J. Hepatocyte nuclear factor 4α (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol. 21, 1393–1403 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Sund, N. J. et al. Hepatocyte nuclear factor 3β (Foxa2) is dispensable for maintaining the differentiated state of the adult hepatocyte. Mol. Cell. Biol. 20, 5175–5183 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Kyrmizi, I. et al. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 20, 2293–2305 (2006). This is an important study showing how the hepatocyte transcription factor regulatory network becomes more elaborate over time and how this may explain why early HNF4a ablation is more disruptive compared to a late knockout.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Martinez-Jimenez, C. P., Kyrmizi, I., Cardot, P., Gonzalez, F. J. & Talianidis, I. Hepatocyte nuclear factor 4α coordinates a transcription factor network regulating hepatic fatty acid metabolism. Mol. Cell. Biol. 30, 565–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  PubMed  Google Scholar 

  100. Busturia, A. & Morata, G. Ectopic expression of homeotic genes caused by the elimination of the Polycomb gene in Drosophila imaginal epidermis. Development 104, 713–720 (1988).

    CAS  PubMed  Google Scholar 

  101. Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nature Rev. Mol. Cell Biol. 10, 697–708 (2009).

    Article  CAS  Google Scholar 

  102. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Beisel, C. & Paro, R. Silencing chromatin: comparing modes and mechanisms. Nature Rev. Genet. 12, 123–135 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Pauli, A., Rinn, J. L. & Schier, A. F. Non-coding RNAs as regulators of embryogenesis. Nature Rev. Genet. 12, 136–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The Polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27, 3769–3779 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Bracken, A. P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nature Rev. Cancer 9, 773–784 (2009).

    Article  CAS  Google Scholar 

  113. Bantignies, F. & Cavalli, G. Cellular memory and dynamic regulation of polycomb group proteins. Curr. Opin. Cell Biol. 18, 275–283 (2012).

    Article  CAS  Google Scholar 

  114. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39, 237–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet. 39, 232–236 (2007).

    CAS  PubMed  Google Scholar 

  117. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet. 39, 157–158 (2007).

    CAS  PubMed  Google Scholar 

  118. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Pasque, V., Halley-Stott, R. P., Gillich, A., Garrett, N. & Gurdon, J. B. Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes. Nucleus 2, 533–539 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  121. Bar-Nur, O., Russ, H. A., Efrat, S. & Benvenisty, N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet β cells. Cell Stem Cell 9, 17–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Zhao, X.-y. et al. iPS cells produce viable mice through tetraploid complementation. Nature 461, 86–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Polo, J. M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotech. 28, 848–855 (2010).

    Article  CAS  Google Scholar 

  125. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Struct. Mol. Biol. 15, 1176–1183 (2008).

    Article  CAS  Google Scholar 

  127. Payer, B., Lee, J. T. & Namekawa, S. H. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum. Genet. 130, 265–280 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  128. Payer, B. & Lee, J. T. X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42, 733–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Balandina, A., Lecart, S., Dartevelle, P., Saoudi, A. & Berrih-Aknin, S. Functional defect of regulatory CD4+CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105, 735–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Miura, Y. et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood 104, 2187–2193 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, Q. et al. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J. Neurosci. 30, 17068–17078 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Bergman, O., Westberg, L., Nilsson, L. G., Adolfsson, R. & Eriksson, E. Preliminary evidence that polymorphisms in dopamine-related transcription factors LMX1A, LMX1B and PITX3 are associated with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 1094–1097 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Le, W. D. et al. Mutations in NR4A2 associated with familial Parkinson disease. Nature Genet. 33, 85–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nature Rev. Neurosci. 8, 368–378 (2007).

    Article  CAS  Google Scholar 

  136. Nicolay, B. N., Bayarmagnai, B., Moon, N. S., Benevolenskaya, E. V. & Frolov, M. V. Combined inactivation of pRB and hippo pathways induces dedifferentiation in the Drosophila retina. PLoS Genet. 6, e1000918 (2010). This study provides interesting findings showing how the retinoblastoma and Hippo tumour suppressor pathways are necessary to maintain differentiated retinal photoreceptor cell identity but not mitotic quiescence in the D. melanogaster eye.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Ajioka, I. et al. Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131, 378–390 (2007). This study shows that as a consequence of RB family member ablation, mature horizontal retinal interneurons can re-enter the cell cycle and undergo mitosis. This occurs without visible loss of neuronal properties, implying that control of cell cycle and differentiation are not always inextricably linked.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Eade, K. T., & Allan, D. W. Neuronal phenotype in the mature nervous system is maintained by persistent retrograde bone morphogenetic protein signaling. J. Neurosci. 29, 3852–3864 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. López-Coviella, I. Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289, 313–316 (2000).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ö. Wrange and members of our laboratories for valuable ideas and discussion. This work was supported by grants from the Swedish Research Council via Linnaeus grant (T.P.), the Swedish Strategic Research Foundation (T.P.), the Swedish Research Council (J.H.) and the Swedish Cancer Society (J.H). We apologize to the authors of the many interesting studies that could not be included owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johan Holmberg or Thomas Perlmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Johan Holmberg's homepage

Thomas Perlmann's homepage

Glossary

Somatic cell nuclear transfer

(SCNT). The process by which the nucleus from an adult cell is transferred into a previously enucleated cell; the reconstructed oocyte is activated, which initiates subsequent development.

Reprogramming

The conversion of a differentiated cell to another cell type, either to another differentiated cell type (transdifferentiation) or to a progenitor (dedifferentiation).

Induced pluripotent stem cells

(iPSCs). Pluripotent cells that can be generated from many different types of somatic cells by expression of only a few pluripotency-related transcription factors and that have properties of embryonic stem cells.

Metaplasias

Environmentally induced processes in which one differentiated cell type is transformed into another differentiated cell type.

Heterokaryons

Non-dividing cells that contain two or more nuclei in a common cytoplasm as a consequence of cell fusion between cells of different identities.

Binary cell specification

The process through which two different cell types are specified from a common progenitor.

Feedforward cascades

Hierarchical organization of several transcription factors emanating from an initiating transcription factor that sequentially activates downstream transcription factors that in turn activate each other.

Terminal selectors

Transcription factors that directly control effector genes for determining mature cell identity. They typically act by binding conserved sequence motifs in multiple effector genes, such as in ion channel genes and other neuron-specific genes in neurons. They were first proposed by Hobert for Caenorhabditis elegans neurons but are potentially applicable to other mature cell types.

Effector genes

Genes that define the cell-type-specific functional properties of a terminally differentiated cell.

Epigenetic modifications

Heritable changes in gene expression that do not depend on a change in DNA sequence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmberg, J., Perlmann, T. Maintaining differentiated cellular identity. Nat Rev Genet 13, 429–439 (2012). https://doi.org/10.1038/nrg3209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing