Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Retroviral oncogenes: a historical primer

Abstract

Retroviruses are the original source of oncogenes. The discovery and characterization of these genes was made possible by the introduction of quantitative cell biological and molecular techniques for the study of tumour viruses. Key features of all retroviral oncogenes were first identified in src, the oncogene of Rous sarcoma virus. These include non-involvement in viral replication, coding for a single protein and cellular origin. The MYC, RAS and ERBB oncogenes quickly followed SRC, and these together with PI3K are now recognized as crucial driving forces in human cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The biochemical definition of v-src.
Figure 2: Acquisition of a cellular oncogene by a retroviral genome.

References

  1. Temin, H. M. & Rubin, H. Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology 6, 669–688 (1958).

    Article  CAS  PubMed  Google Scholar 

  2. Hanafusa, H., Hanafusa, T. & Rubin, H. Analysis of the defectiveness of Rous sarcoma virus. I. Characterization of the helper virus. Virology 22, 591–601 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Hanafusa, H., Hanafusa, T. & Rubin, H. Analysis of the defectiveness of Rous sarcoma virus, II. Specification of RSV antigenicity by helper virus. Proc. Natl Acad. Sci. USA 51, 41–48 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rubin, H. & Vogt, P. K. An avian leukosis virus associated with stocks of Rous sarcoma virus. Virology 17, 184–194 (1962).

    Article  CAS  PubMed  Google Scholar 

  5. Martin, G. S. The road to Src. Oncogene 23, 7910–7917 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Temin, H. M. The control of cellular morphology in embryonic cells infected with rous sarcoma virus in vitro. Virology 10, 182–197 (1960).

    Article  CAS  PubMed  Google Scholar 

  7. Yoshii, S. & Vogt, P. K. A mutant of rous sarcoma virus (type O) causing fusiform cell transformation. Proc. Soc. Exp. Biol. Med. 135, 297–301 (1970).

    Article  CAS  PubMed  Google Scholar 

  8. Hanafusa, H., Hanafusa, T. & Rubin, H. The defectiveness of Rous sarcoma virus. Proc. Natl Acad. Sci. USA 49, 572–580 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Temin, H. M. Separation of morphological conversion and virus production in Rous sarcoma virus infection. Cold Spring Harb. Symp. Quant. Biol. 27, 407–414 (1962).

    Article  CAS  PubMed  Google Scholar 

  10. Goldé, A. & Lacassagne, M. Non-défectivité de la souche de virus de Rouse de Schmidt-Ruppin. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D. 262, 329–331 (1966) (in French).

    Google Scholar 

  11. Duff, R. G. & Vogt, P. K. Characteristics of two new avian tumor virus subgroups. Virology 39, 18–30 (1969).

    Article  CAS  PubMed  Google Scholar 

  12. Martin, G. S. & Duesberg, P. H. The a subunit in the RNA of transforming avian tumor viruses. I. Occurrence in different virus strains. II. Spontaneous loss resulting in nontransforming variants. Virology 47, 494–497 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Vogt, P. K. Spontaneous segregation of nontransforming viruses from cloned sarcoma viruses. Virology 46, 939–946 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. Martin, G. S. Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 227, 1021–1023 (1970).

    Article  CAS  PubMed  Google Scholar 

  15. Toyoshima, K. & Vogt, P. K. Temperature sensitive mutants of an avian sarcoma virus. Virology 39, 930–931 (1969).

    Article  CAS  PubMed  Google Scholar 

  16. Duesberg, P. H. & Vogt, P. K. Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc. Natl Acad. Sci. USA 67, 1673–1680 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bernstein, A., MacCormick, R. & Martin, G. S. Transformation-defective mutants of avian sarcoma viruses: the genetic relationship between conditional and nonconditional mutants. Virology 70, 206–209 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, L. H., Duesberg, P. H., Kawai, S. & Hanafusa, H. Location of envelope-specific and sarcoma-specific oligonucleotides on RNA of Schmidt-Ruppin Rous sarcoma virus. Proc. Natl Acad. Sci. USA 73, 447–451 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226, 1209–1211 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Temin, H. M. & Mizutani, S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211–1213 (1970).

    Article  CAS  PubMed  Google Scholar 

  21. Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).

    Article  CAS  PubMed  Google Scholar 

  22. Roussel, M. et al. Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature 281, 452–455 (1979).

    Article  CAS  PubMed  Google Scholar 

  23. Coffin, J. Hughes, S. & Varmus, H. (eds) Retroviruses (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  24. Strauss, J. & Strauss, E. Viruses and Human Disease (Academic Press, 2007).

    Google Scholar 

  25. Flint, S., Enquist, L. & Racaniello, V. Principles of Virology (ASM Press, 2009).

    Google Scholar 

  26. Temin, H. Nature of the provirus of Rous sarcoma. Natl Cancer Inst. Monogr. 17, 557–570 (1964).

    Google Scholar 

  27. Temin, H. M. The participation of DNA in Rous sarcoma virus production. Virology 23, 486–494 (1964).

    Article  CAS  PubMed  Google Scholar 

  28. Vogt, P. & Bader, A. in Encyclopedia of Virology (eds Mahy, B. W. J. & van Regenmortel, M. H. V.) 445–450 (Elsevier, 2008).

    Book  Google Scholar 

  29. Varmus, H. E. Form and function of retroviral proviruses. Science 216, 812–820 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Brugge, J. S. & Erikson, R. L. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269, 346–348 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Collett, M. S. & Erikson, R. L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl Acad. Sci. USA 75, 2021–2024 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levinson, A. D., Oppermann, H., Levintow, L., Varmus, H. E. & Bishop, J. M. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15, 561–572 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Hunter, T. & Sefton, B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl Acad. Sci. USA 77, 1311–1315 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ushiro, H. & Cohen, S. Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J. Biol. Chem. 255, 8363–8365 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. Hunter, T. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21, 140–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Czernilofsky, A. P. et al. Corrections to the nucleotide sequence of the src gene of Rous sarcoma virus. Nature 301, 736–738 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Czernilofsky, A. P. et al. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature 287, 198–203 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Schwartz, D. E., Tizard, R. & Gilbert, W. Nucleotide sequence of Rous sarcoma virus. Cell 32, 853–869 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Takeya, T., Feldman, R. A. & Hanafusa, H. DNA sequence of the viral and cellular src gene of chickens. 1. Complete nucleotide sequence of an EcoRI fragment of recovered avian sarcoma virus which codes for gp37 and pp60src. J. Virol. 44, 1–11 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coussens, P. M., Cooper, J. A., Hunter, T. & Shalloway, D. Restriction of the in vitro and in vivo tyrosine protein kinase activities of pp60c-src relative to pp60v-src. Mol. Cell. Biol. 5, 2753–2763 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Iba, H., Cross, F. R., Garber, E. A. & Hanafusa, H. Low level of cellular protein phosphorylation by nontransforming overproduced p60c-src. Mol. Cell. Biol. 5, 1058–1066 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Iba, H., Takeya, T., Cross, F. R., Hanafusa, T. & Hanafusa, H. Rous sarcoma virus variants that carry the cellular src gene instead of the viral src gene cannot transform chicken embryo fibroblasts. Proc. Natl Acad. Sci. USA 81, 4424–4428 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sadowski, I., Stone, J. C. & Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell. Biol. 6, 4396–4408 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, W., Doshi, A., Lei, M., Eck, M. J. & Harrison, S. C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Martin, G. S. The hunting of the Src. Nature Rev. Mol. Cell Biol. 2, 467–475 (2001).

    Article  CAS  Google Scholar 

  48. Duesberg, P. H., Bister, K. & Vogt, P. K. The RNA of avian acute leukemia virus MC29. Proc. Natl Acad. Sci. USA 74, 4320–4324 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bister, K., Ramsay, G., Hayman, M. J. & Duesberg, P. H. OK10, an avian acute leukemia virus of the MC 29 subgroup with a unique genetic structure. Proc. Natl Acad. Sci. USA 77, 7142–7146 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duesberg, P. H. & Vogt, P. K. Avian acute leukemia viruses MC29 and MH2 share specific RNA sequences: evidence for a second class of transforming genes. Proc. Natl Acad. Sci. USA 76, 1633–1637 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kan, N. C., Flordellis, C. S., Garon, C. F., Duesberg, P. H. & Papas, T. S. Avian carcinoma virus MH2 contains a transformation-specific sequence, mht, and shares the myc sequence with MC29, CMII, and OK10 viruses. Proc. Natl Acad. Sci. USA 80, 6566–6570 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bister, K., Hayman, M. J. & Vogt, P. K. Defectiveness of avian myelocytomatosis virus MC29: isolation of long-term nonproducer cultures and analysis of virus-specific polypeptide synthesis. Virology 82, 431–448 (1977).

    Article  CAS  PubMed  Google Scholar 

  53. Maxam, A. M. & Gilbert, W. A new method for sequencing DNA. Proc. Natl Acad. Sci. USA 74, 560–564 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975).

    Article  CAS  PubMed  Google Scholar 

  55. Dalla-Favera, R. et al. Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MC29). Proc. Natl Acad. Sci. USA 79, 6497–6501 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alitalo, K. et al. Nucleotide sequence to the v-myc oncogene of avian retrovirus MC29. Proc. Natl Acad. Sci. USA 80, 100–104 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abrams, H. D., Rohrschneider, L. R. & Eisenman, R. N. Nuclear location of the putative transforming protein of avian myelocytomatosis virus. Cell 29, 427–439 (1982).

    Article  CAS  PubMed  Google Scholar 

  58. Blackwood, E. M. & Eisenman, R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Eisenman, R. N. The Max network: coordinated transcriptional regulation of cell growth and proliferation. Harvey Lect. 96, 1–32 (2000).

    Google Scholar 

  60. Seitz, V. et al. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS ONE 6, e26837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ikegaki, N., Minna, J. & Kennett, R. H. The human L-myc gene is expressed as two forms of protein in small cell lung carcinoma cell lines: detection by monoclonal antibodies specific to two myc homology box sequences. EMBO J. 8, 1793–1799 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schwab, M. et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Depinho, R. A. et al. Myc family genes: a dispersed multi-gene family. Ann. Clin. Res. 18, 284–289 (1986).

    CAS  PubMed  Google Scholar 

  64. Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl Acad. Sci. USA 79, 7824–7827 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schwab, M. et al. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc. Natl Acad. Sci. USA 81, 4940–4944 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, P. et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nature Med. 17, 1116–1120 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harvey, J. J. An unidentified virus which causes the rapid production of tumours in mice. Nature 204, 1104–1105 (1964).

    Article  CAS  PubMed  Google Scholar 

  69. Kirsten, W. H. & Mayer, L. A. Morphologic responses to a murine erythroblastosis virus. J. Natl Cancer Inst. 39, 311–335 (1967).

    CAS  PubMed  Google Scholar 

  70. Shih, T. Y., Weeks, M. O., Young, H. A. & Scolnick, E. M. Identification of a sarcoma virus-coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus. Virology 96, 64–79 (1979).

    Article  CAS  PubMed  Google Scholar 

  71. Parks, W. P. & Scolnick, E. M. In vitro translation of Harvey murine sarcoma virus RNA. J. Virol. 22, 711–719 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hager, G. L. et al. Molecular cloning of the Harvey sarcoma virus closed circular DNA intermediates: initial structural and biological characterization. J. Virol. 31, 795–809 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tsuchida, N., Ryder, T. & Ohtsubo, E. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science 217, 937–939 (1982).

    Article  CAS  PubMed  Google Scholar 

  74. Tsuchida, N. & Uesugi, S. Structure and functions of the Kirsten murine sarcoma virus genome: molecular cloning of biologically active Kirsten murine sarcoma virus DNA. J. Virol. 38, 720–727 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gibbs, J. B., Sigal, I. S., Poe, M. & Scolnick, E. M. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl Acad. Sci. USA 81, 5704–5708 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McGrath, J. P., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310, 644–649 (1984).

    Article  CAS  PubMed  Google Scholar 

  77. Scolnick, E. M., Papageorge, A. G. & Shih, T. Y. Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. Proc. Natl Acad. Sci. USA 76, 5355–5359 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sweet, R. W. et al. The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311, 273–275 (1984).

    Article  CAS  PubMed  Google Scholar 

  79. Kamata, T. & Feramisco, J. R. Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature 310, 147–150 (1984).

    Article  CAS  PubMed  Google Scholar 

  80. Downward, J., Riehl, R., Wu, L. & Weinberg, R. A. Identification of a nucleotide exchange-promoting activity for p21ras. Proc. Natl Acad. Sci. USA 87, 5998–6002 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wolfman, A. & Macara, I. G. A cytosolic protein catalyzes the release of GDP from p21ras. Science 248, 67–69 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. McCormick, F. Signal transduction. How receptors turn Ras on. Nature 363, 15–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Kan, N. C., Flordellis, C. S., Mark, G. E., Duesberg, P. H. & Papas, T. S. A common onc gene sequence transduced by avian carcinoma virus MH2 and by murine sarcoma virus 3611. Science 223, 813–816 (1984).

    Article  CAS  PubMed  Google Scholar 

  84. Rapp, U. R. & Todaro, G. J. Generation of oncogenic mouse type C viruses: in vitro selection of carcinoma-inducing variants. Proc. Natl Acad. Sci. USA 77, 624–628 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jansen, H. W. et al. Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature 307, 281–284 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Jansen, H. W., Ruckert, B., Lurz, R. & Bister, K. Two unrelated cell-derived sequences in the genome of avian leukemia and carcinoma inducing retrovirus MH2. EMBO J. 2, 1969–1975 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moodie, S. A., Willumsen, B. M., Weber, M. J. & Wolfman, A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658–1661 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Warne, P. H., Viciana, P. R. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. J. & McCormick, F. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240, 518–521 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).

    Article  CAS  PubMed  Google Scholar 

  94. Tabin, C. J. et al. Mechanism of activation of a human oncogene. Nature 300, 143–149 (1982).

    Article  CAS  PubMed  Google Scholar 

  95. Taparowsky, E. et al. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300, 762–765 (1982).

    Article  CAS  PubMed  Google Scholar 

  96. Trahey, M. & McCormick, F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238, 542–545 (1987).

    Article  CAS  PubMed  Google Scholar 

  97. Willingham, M. C., Pastan, I., Shih, T. Y. & Scolnick, E. M. Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell 19, 1005–1014 (1980).

    Article  CAS  PubMed  Google Scholar 

  98. Finegold, A. A., Schafer, W. R., Rine, J., Whiteway, M. & Tamanoi, F. Common modifications of trimeric G proteins and ras protein: involvement of polyisoprenylation. Science 249, 165–169 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Schafer, W. R. et al. Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science 245, 379–385 (1989).

    Article  CAS  PubMed  Google Scholar 

  100. Perucho, M. et al. Human-tumor-derived cell lines contain common and different transforming genes. Cell 27, 467–476 (1981).

    Article  CAS  PubMed  Google Scholar 

  101. Shih, C., Padhy, L. C., Murray, M. & Weinberg, R. A. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290, 261–264 (1981).

    Article  CAS  PubMed  Google Scholar 

  102. Der, C. J., Krontiris, T. G. & Cooper, G. M. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl Acad. Sci. USA 79, 3637–3640 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297, 474–478 (1982).

    Article  CAS  PubMed  Google Scholar 

  104. Santos, E. et al. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223, 661–664 (1984).

    Article  CAS  PubMed  Google Scholar 

  105. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer 3, 459–465 (2003).

    Article  CAS  Google Scholar 

  106. Hall, A., Marshall, C. J., Spurr, N. K. & Weiss, R. A. Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303, 396–400 (1983).

    Article  CAS  PubMed  Google Scholar 

  107. Engelbreth-Holm, J. & Rothe Meyer, A. On the connection between erythroblastosis (Hæmocytoblastosis), myelosis and sarcoma in chicken. APMIS 12, 352–365 (1935).

    Google Scholar 

  108. Bister, K. & Jansen, H. W. Oncogenes in retroviruses and cells: biochemistry and molecular genetics. Adv. Cancer Res. 47, 99–188 (1986).

    Article  CAS  PubMed  Google Scholar 

  109. Bister, K. & Duesberg, P. H. Structure and specific sequences of avian erythroblastosis virus RNA: evidence for multiple classes of transforming genes among avian tumor viruses. Proc. Natl Acad. Sci. USA 76, 5023–5027 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lai, M. M., Hu, S. S. & Vogt, P. K. Avian erythroblastosis virus: transformation-specific sequences form a contiguous segment of 3.25 kb located in the middle of the 6-kb genome. Virology 97, 366–377 (1979).

    Article  CAS  PubMed  Google Scholar 

  111. Hihara, H., Yamamoto, H., Shimohira, H., Arai, K. & Shimizu, T. Avian erythroblastosis virus isolated from chick erythroblastosis induced by lymphatic leukemia virus subgroup A. J. Natl Cancer Inst. 70, 891–897 (1983).

    CAS  PubMed  Google Scholar 

  112. Boerner, J. L., Danielsen, A. & Maihle, N. J. Ligand-independent oncogenic signaling by the epidermal growth factor receptor: v-ErbB as a paradigm. Exp. Cell Res. 284, 111–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Vennstrom, B., Fanshier, L., Moscovici, C. & Bishop, J. M. Molecular cloning of the avian erythroblastosis virus genome and recovery of oncogenic virus by transfection of chicken cells. J. Virol. 36, 575–585 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamamoto, T., Hihara, H., Nishida, T., Kawai, S. & Toyoshima, K. A new avian erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell 34, 225–232 (1983).

    Article  CAS  PubMed  Google Scholar 

  115. Yamamoto, T. et al. The erbB gene of avian erythroblastosis virus is a member of the src gene family. Cell 35, 71–78 (1983).

    Article  CAS  PubMed  Google Scholar 

  116. Nishida, T. et al. Comparison of genome structures among three different strains of avian erythroblastosis virus. Gann 75, 325–333 (1984).

    CAS  PubMed  Google Scholar 

  117. Hayman, M. J., Royer-Pokora, B. & Graf, T. Defectiveness of avian erythroblastosis virus: synthesis of a 75K gag-related protein. Virology 92, 31–45 (1979).

    Article  CAS  PubMed  Google Scholar 

  118. Rettenmier, C. W. Anderson, S.M., Riemen, M.W. & Hanafusa, H. gag-Related polypeptides encoded by replication-defective avian oncoviruses. J. Virol. 32, 749–761 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hayman, M. J. et al. Identification and characterization of the avian erythroblastosis virus erbB gene product as a membrane glycoprotein. Cell 32, 579–588 (1983).

    Article  CAS  PubMed  Google Scholar 

  120. Privalsky, M. L., Sealy, L., Bishop, J. M., McGrath, J. P. & Levinson, A. D. The product of the avian erythroblastosis virus erbB locus is a glycoprotein. Cell 32, 1257–1267 (1983).

    Article  CAS  PubMed  Google Scholar 

  121. Hayman, M. J. & Beug, H. Identification of a form of the avian erythroblastosis virus erb-B gene product at the cell surface. Nature 309, 460–462 (1984).

    Article  CAS  PubMed  Google Scholar 

  122. Privalsky, M. L. & Bishop, J. M. Subcellular localization of the v-erb-B protein, the product of a transforming gene of avian erythroblastosis virus. Virology 135, 356–368 (1984).

    Article  CAS  PubMed  Google Scholar 

  123. Privalsky, M. L., Ralston, R. & Bishop, J. M. The membrane glycoprotein encoded by the retroviral oncogene v-erb-B is structurally related to tyrosine-specific protein kinases. Proc. Natl Acad. Sci. USA 81, 704–707 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kris, R. M. et al. Antibodies against a synthetic peptide as a probe for the kinase activity of the avian EGF receptor and v-erbB protein. Cell 40, 619–625 (1985).

    Article  CAS  PubMed  Google Scholar 

  125. Decker, S. J. Phosphorylation of the erbB gene product from an avian erythroblastosis virus-transformed chick fibroblast cell line. J. Biol. Chem. 260, 2003–2006 (1985).

    Article  CAS  PubMed  Google Scholar 

  126. Downward, J. et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307, 521–527 (1984).

    Article  CAS  PubMed  Google Scholar 

  127. Ullrich, A. et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309, 418–425 (1984).

    Article  CAS  PubMed  Google Scholar 

  128. Hatanpaa, K. J., Burma, S., Zhao, D. & Habib, A. A. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia 12, 675–684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yamamoto, H., Toyooka, S. & Mitsudomi, T. Impact of EGFR mutation analysis in non-small cell lung cancer. Lung Cancer 63, 315–321 (2009).

    Article  PubMed  Google Scholar 

  134. Plowman, G. D. et al. Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc. Natl Acad. Sci. USA 90, 1746–1750 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Plowman, G. D. et al. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc. Natl Acad. Sci. USA 87, 4905–4909 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schechter, A. L. et al. The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229, 976–978 (1985).

    Article  CAS  PubMed  Google Scholar 

  137. Bargmann, C. I., Hung, M. C. & Weinberg, R. A. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45, 649–657 (1986).

    Article  CAS  PubMed  Google Scholar 

  138. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  139. Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17, 2639–2648 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Amin, D. N., Campbell, M. R. & Moasser, M. M. The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin. Cell Dev. Biol. 21, 944–950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Muraoka-Cook, R. S., Feng, S. M., Strunk, K. E. & Earp, H. S. ErbB4/HER4: role in mammary gland development, differentiation and growth inhibition. J. Mammary Gland Biol. Neoplasia 13, 235–246 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kung, H. J., Boerkoel, C. & Carter, T. H. Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation. Curr. Top. Microbiol. Immunol. 171, 1–25 (1991).

    CAS  PubMed  Google Scholar 

  143. Maki, Y., Bos, T. J., Davis, C., Starbuck, M. & Vogt, P. K. Avian sarcoma virus 17 carries the jun oncogene. Proc. Natl Acad. Sci. USA 84, 2848–2852 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, J. & Vogt, P. K. The retroviral oncogene qin belongs to the transcription factor family that includes the homeotic gene fork head. Proc. Natl Acad. Sci. USA 90, 4490–4494 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chang, H. W. et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276, 1848–1850 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Curran, T. & Teich, N. M. Candidate product of the FBJ murine osteosarcoma virus oncogene: characterization of a 55,000-dalton phosphoprotein. J. Virol. 42, 114–122 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vogt, P. K. The story of Jun. Arch. Biochem. Biophys. 316, 1–4 (1995).

    Article  CAS  PubMed  Google Scholar 

  148. Vogt, P. K. Jun, the oncoprotein. Oncogene 20, 2365–2377 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Li, Z., Tuteja, G., Schug, J. & Kaestner, K. H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 148, 72–83 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Myatt, S. S. & Lam, E. W. The emerging roles of forkhead box (Fox) proteins in cancer. Nature Rev. Cancer 7, 847–859 (2007).

    Article  CAS  Google Scholar 

  151. Schaffhausen, B. S. & Roberts, T. M. Lessons from polyoma middle T antigen on signaling and transformation: A DNA tumor virus contribution to the war on cancer. Virology 384, 304–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L. & Roberts, T. M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239–242 (1985).

    Article  CAS  PubMed  Google Scholar 

  153. Cantley, L. C. et al. Oncogenes and phosphatidylinositol turnover. Ann. NY Acad. Sci. 488, 481–490 (1986).

    Article  CAS  PubMed  Google Scholar 

  154. Kaplan, D. R. et al. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50, 1021–1029 (1987).

    Article  CAS  PubMed  Google Scholar 

  155. Courtneidge, S. A. & Heber, A. An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 50, 1031–1037 (1987).

    Article  CAS  PubMed  Google Scholar 

  156. Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).

    Article  CAS  PubMed  Google Scholar 

  157. Yuan, T. L. & Cantley, L. C. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Rev. Genet. 7, 606–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Aoki, M. et al. The catalytic subunit of phosphoinositide 3-kinase: requirements for oncogenicity. J. Biol. Chem. 275, 6267–6275 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Sun, M., Hart, J. R., Hillmann, P., Gymnopoulos, M. & Vogt, P. K. Addition of N-terminal peptide sequences activates the oncogenic and signaling potentials of the catalytic subunit p110α of phosphoinositide-3-kinase. Cell Cycle 10, 3731–3739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chaussade, C., Cho, K., Mawson, C., Rewcastle, G. W. & Shepherd, P. R. Functional differences between two classes of oncogenic mutation in the PIK3CA gene. Biochem. Biophys. Res. Commun. 381, 577–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Zhao, L. & Vogt, P. K. Helical domain and kinase domain mutations in p110α of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc. Natl Acad. Sci. USA 105, 2652–2657 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Miled, N. et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317, 239–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Shekar, S. C. et al. Mechanism of constitutive phosphoinositide 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. J. Biol. Chem. 280, 27850–27855 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Georgescu, M. M. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 1, 1170–1177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Courtney, K. D., Corcoran, R. B. & Engelman, J. A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol. 28, 1075–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y. & Mills, G. B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Rev. Drug Discov. 4, 988–1004 (2005).

    Article  CAS  Google Scholar 

  168. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  171. Feldman, M. E. & Shokat, K. M. New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs). Curr. Top. Microbiol. Immunol. 347, 241–262 (2010).

    CAS  PubMed  Google Scholar 

  172. Sherr, C. J. Principles of tumor suppression. Cell 116, 235–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Lovat, F., Valeri, N. & Croce, C. M. MicroRNAs in the pathogenesis of cancer. Semin. Oncol. 38, 724–733 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Morris, K. V. & Vogt, P. K. Long antisense non-coding RNAs and their role in transcription and oncogenesis. Cell Cycle 9, 2544–2547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Druker, B. J. Translation of the Philadelphia chromosome into therapy for CML. Blood 112, 4808–4817 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Corcoran, R. B., Settleman, J. & Engelman, J. A. Potential therapeutic strategies to overcome acquired resistance to BRAF or MEK inhibitors in BRAF mutant cancers. Oncotarget 2, 336–346 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Engelman, J. A. & Janne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895–2899 (2008).

    Article  PubMed  Google Scholar 

  178. Hayward, W. S., Neel, B. G. & Astrin, S. M. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290, 475–480 (1981).

    Article  CAS  PubMed  Google Scholar 

  179. Kool, J. & Berns, A. High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nature Rev. Cancer 9, 389–399 (2009).

    Article  CAS  Google Scholar 

  180. Berk, A. J. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Munger, K. et al. Mechanisms of human papillomavirus-induced oncogenesis. J. Virol. 78, 11451–11460 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Bracken, A. P., Ciro, M., Cocito, A. & Helin, K. E2F target genes: unraveling the biology. Trends Biochem. Sci. 29, 409–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Sullivan, C. S. & Pipas, J. M. T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol. Mol. Biol. Rev. 66, 179–202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Massague, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Damania, B. Oncogenic γ-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nature Rev. Microbiol. 2, 656–668 (2004).

    Article  CAS  Google Scholar 

  186. Hecht, J. L. & Aster, J. C. Molecular biology of Burkitt's lymphoma. J. Clin. Oncol. 18, 3707–3721 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. Smith, S. M., Anastasi, J., Cohen, K. S. & Godley, L. A. The impact of MYC expression in lymphoma biology: beyond Burkitt lymphoma. Blood Cells Mol. Dis. 45, 317–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Klapproth, K. & Wirth, T. Advances in the understanding of MYC-induced lymphomagenesis. Br. J. Haematol. 149, 484–497 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Corvi, R., Savelyeva, L. & Schwab, M. Patterns of oncogene activation in human neuroblastoma cells. J. Neurooncol 31, 25–31 (1997).

    Article  CAS  PubMed  Google Scholar 

  190. Taylor, M. D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Swartling, F. J. Myc proteins in brain tumor development and maintenance. Ups. J. Med. Sci. 117, 122–131 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Scheurlen, W. G. et al. Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J. Clin. Oncol. 16, 2478–2485 (1998).

    Article  CAS  PubMed  Google Scholar 

  193. Huang, P. H., Xu, A. M. & White, F. M. Oncogenic EGFR signaling networks in glioma. Sci. Signal. 2, re6 (2009).

    PubMed  Google Scholar 

  194. Zavoral, M., Minarikova, P., Zavada, F., Salek, C. & Minarik, M. Molecular biology of pancreatic cancer. World J. Gastroenterol. 17, 2897–2908 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Morris, J. P.t., Wang, S. C. & Hebrok, M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nature Rev. Cancer 10, 683–695 (2010).

    Article  CAS  Google Scholar 

  196. Perez-Mancera, P. A. & Tuveson, D. A. Physiological analysis of oncogenic K-ras. Methods Enzymol. 407, 676–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Poulikakos, P. I. & Rosen, N. Mutant BRAF melanomas-dependence and resistance. Cancer Cell 19, 11–15 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author extends sincere thanks to K. Bister and A. Zembrzycki for help with this paper. K. Bister read several iterations of this article, offering insightful comments and valuable suggestions. A. Zembrzycki transformed multiple disorganized drafts into a formatted manuscript. Work of the author is supported by US National Institutes of Health grants R01CA078230, R01CA153124 and R01CA151574.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Peter K. Vogt's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, P. Retroviral oncogenes: a historical primer. Nat Rev Cancer 12, 639–648 (2012). https://doi.org/10.1038/nrc3320

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3320

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer