Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain metastases as preventive and therapeutic targets

Key Points

  • Brain metastases are most common in patients with lung cancers, breast cancers or melanoma.

  • Treatment includes surgery and radiation therapy. Whole-brain radiation therapy (WBRT) has been shown to prevent lung cancer brain metastases, but causes cognitive decline.

  • In animal models of brain metastasis, tumour cells crawl outside the blood vessels and interact with an inflamed neural microenvironment to colonize the brain.

  • Alterations in the expression of several genes, including ERBB2, ST6GALNAC5, TCF, transforming growth factor-β (TGFB), vascular endothelial growth factor (VEGF), Serpine1 and Timp1, have modulated brain metastasis.

  • Chemotherapeutic efficacy for brain metastases remains disappointing.

  • In experimental models, brain metastases opened the blood–brain barrier (BBB) several-fold over the normal brain, but only 10% of lesions exhibited sufficient drug permeability to mount an apoptotic response to chemotherapy.

  • BBB-permeable drugs are needed to improve chemotherapeutic efficacy.

  • Prevention of brain metastasis formation in mice has been observed in response to lapatinib, vorinostat, pazopanib, signal transducer and activator of transcription 3 (STAT3) inhibitors and VEGF receptor (VEGFR) inhibitors.

  • New trial designs could test drugs for the prevention of brain metastases. Secondary prevention trials would determine the time to the development of a new brain metastasis in patients with either one or several existing lesions.

  • Radiosensitizers may improve the efficacy of radiation therapy while sparing normal tissue.

  • Inhibition of the neuroinflammatory response is hypothesized to protect the brain from WBRT-induced cognitive decline.

Abstract

The incidence of metastasis to the brain is apparently rising in cancer patients and threatens to limit the gains that have been made by new systemic treatments. The brain is considered a 'sanctuary site' as the blood–tumour barrier limits the ability of drugs to enter and kill tumour cells. Translational research examining metastasis to the brain needs to be multi-disciplinary, marrying advanced chemistry, blood–brain barrier pharmacokinetics, neurocognitive testing and radiation biology with metastasis biology, to develop and implement new clinical trial designs. Advances in the chemoprevention of brain metastases, the validation of tumour radiation sensitizers and the amelioration of cognitive deficits caused by whole-brain radiation therapy are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps in the development of brain metastases in an animal model.
Figure 2: The blood–brain barrier (BBB) and its role in drug uptake.
Figure 3: Pathways mediating radiation sensitization.

Similar content being viewed by others

Adrienne Boire, Priscilla K. Brastianos, … Manuel Valiente

References

  1. Yamanaka, R. Medical management of brain metastases from lung cancer (Review). Oncol. Rep. 22, 1269–1276 (2009).

    CAS  PubMed  Google Scholar 

  2. Oh, Y. et al. Number of metastatic sites is a strong predictor of survival in paitents with nonsmall cell lung cancer with or without brain metastases. Cancer 115, 2930–2938 (2009).

    PubMed  Google Scholar 

  3. Lin, N., Bellon, J. & Winer, E. CNS metastases in breast cancer. J. Clin. Oncol. 22, 3608–3617 (2004).

    PubMed  Google Scholar 

  4. Lin, N. U. & Winer, E. P. Brain metastases: the HER2 paradigm. Clin. Cancer Res. 13, 1648–1655 (2007).

    CAS  PubMed  Google Scholar 

  5. Weil, R., Palmieri, D., Bronder, J., Stark, A. & Steeg, P. Breast cancer metastasis to the central nervous system. Am. J. Pathol. 167, 913–920 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bendell, J. et al. Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 97, 2972–2977 (2003).

    PubMed  Google Scholar 

  7. Lin, N. et al. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer. High incidence of central nervous system metastases. Cancer 113, 2638–2645 (2008).

    PubMed  Google Scholar 

  8. Tsukada, Y., Fouad, A., Pickren, J. W. & Lane, W. W. Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer 52, 2349–2354 (1983).

    CAS  PubMed  Google Scholar 

  9. Miller, K. et al. Occult central nervous system involvement in patients with metastatic breast cancer: prevalence, predictive factors and impact on overall survival. Ann. Oncol. 14, 1072–1077 (2003). This paper reports the frequency of undiagnosed brain metastases in a modern chemotherapeutic setting.

    CAS  PubMed  Google Scholar 

  10. McWilliams, R. et al. Melanoma-induced brain metastases. Expert Rev. Anticancer Ther. 8, 743–755 (2008).

    PubMed  Google Scholar 

  11. Mattieu, A. et al. Development of a chemoresistant orthotopic human nonsmall cell lung carcinoma model in nude mice. Cancer 101, 1908–1918 (2004).

    Google Scholar 

  12. Zhang, Z., Hatori, T. & Nonaka, H. An experimental model of brain metastasis of lung carcinoma. Neuropathology 28, 24–28 (2008).

    CAS  PubMed  Google Scholar 

  13. Kienast, Y. et al. Real-time imaging reveals the single steps in brain metastasis formation. Nature Med. 16, 116–122 (2010). This paper used imaging to detail the process of brain colonization by experimental metastases.

    CAS  PubMed  Google Scholar 

  14. Yoneda, T., Williams, P., Hiraga, T., Niewolna, M. & Nishimura, R. A bone seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking cloe in vivo and in vitro. J. Bone Miner. Res. 16, 1486–1495 (2001).

    CAS  PubMed  Google Scholar 

  15. Lockman, P. et al. Heterogeneous blood-brain barrier permeability determines drug efficacy in mouse brain metastases of breast cancer. Clin. Cancer Res. 16, 5662–5678 (2010). This paper quantifies the heterogeneous permeability of experimental brain metastases and shows that only 10% of lesions demonstrate sufficient chemotherapeutic permeability to produce a cytotoxic response.

    Google Scholar 

  16. Gril, B. et al. Pazopanib reveals a role for tumor cell B-Raf in the prevention of breast cancer brain metastasis. Clin. Cancer Res. 17, 142–153 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Bos, P. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1010 (2009). A paper detailing the molecular characterization of breast cancer brain metastases.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Price, J. E., Polyzos, A., Zhang, R. D. & Daniels, L. M. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50, 717–721 (1990).

    CAS  PubMed  Google Scholar 

  19. Rye, P. et al. Brain metastasis model in athymic nude mice using a novel MUC1-secreting human breast-cancer cell line, MA11. Int. J. Cancer 68, 682–687 (1996).

    CAS  PubMed  Google Scholar 

  20. Carbonell, W., Ansorge, O., Sibson, N. & Muschel, R. The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4, e5857 (2009). This paper traces the colonization of the brain by brain-tropic metastatic cells and validates the contribution of integrins.

    PubMed  PubMed Central  Google Scholar 

  21. Leenders, W. et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. 10, 6222–6230 (2004). This is an analysis of vascular co-option versus angiogenesis in experimental brain metastasis.

    CAS  PubMed  Google Scholar 

  22. Cranmer, L. D., Trevor, K. T., Bandlamuri, S. & Hersh, E. M. Rodent models of brain metastasis in melanoma. Melanoma Res. 15, 325–356 (2005).

    PubMed  Google Scholar 

  23. Zhang, C., Zhang, F., Tsan, R. & Fidler, I. Transforming growth factor β2 is a molecular determinant for site specific melanoma metastasis in the brain. Cancer Res. 69, 828–835 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, F.-J. et al. Molecular basis of the critical role of suppressor of cytokine signaling-1 in melanoma brain metastasis. Cancer Res. 68, 9634–9642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin, J. et al. Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clin. Exp. Metastasis 26, 403–414 (2009).

    PubMed Central  Google Scholar 

  26. Kruger, A. et al. Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene 16, 2419–2423 (1998).

    CAS  PubMed  Google Scholar 

  27. Maillard, C. et al. Reduction of brain metastases in plasminogen activator inhibitor-1 deficient mice with transgenic ocular tumors. Carcinogenesis 29, 2236–2242 (2008).

    CAS  PubMed  Google Scholar 

  28. Cruz-Munoz, W., Man, S., Xu, P. & Kerbel, R. Development of a preclinical model of spontaneous human melanoma central nervous system metastasis. Cancer Res. 68, 4500–4505 (2008).

    CAS  PubMed  Google Scholar 

  29. Fitzgerald, D. et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin. Exp. Metast. 25, 799–810 (2008). This paper validates the relevance of preclinical experimental metastasis models to resected human tissues. It describes a functional interaction between tumour cells and neuroinflammatory cells.

    Google Scholar 

  30. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 99–101 (1889).

    Google Scholar 

  31. Lorger, M. & Felding-Habermann, B. Capturing changes in the brain microenvironment during intial steps of breast cancer brain metastasis. Am. J. Pathol. 176, 2958–2971 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Zhang, M. & Olsson, Y. Hematogenous metastases of the human brain - characteristics of peritumoral brain changes: a review. J. Neurooncol. 35, 81–89 (1997).

    CAS  PubMed  Google Scholar 

  33. Seike, T. et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin. Exp. Metastasis 28, 13–25 (2011).

    CAS  PubMed  Google Scholar 

  34. Lin, Q. et al. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 12, 748–754 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pukrop, R. et al. Microglia promote the colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58, 1477–1489 (2010).

    PubMed  Google Scholar 

  36. Salgado, K., Toscani, N., Silva, L., Hilbig, A. & Barbosa-Coutinho, L. Immunoexpression of endoglin in brain metastasis secondary to malignant melanoma: evaluation of angiogenesis and comparison with brain metastasis secondary to breast and lung carcinomas. Clin. Exp. Metastasis 24, 403–410 (2007).

    CAS  PubMed  Google Scholar 

  37. Leenders, W. et al. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int. J. Cancer 105, 437–443 (2003).

    CAS  PubMed  Google Scholar 

  38. Kim, L., Huang, S., Lu, W., Lev, D. C. & Price, J. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin. Exp. Metastasis 21, 107–118 (2004).

    CAS  PubMed  Google Scholar 

  39. Heyn, C. et al. In vivo magnetic resonance imaging of single cells in mouse brains with optical validation. Magn. Reson. Med. 55, 23–29 (2006). A study showing that dormant tumour cells exist in the brain using in vivo imaging and post-mortem microscopy.

    PubMed  Google Scholar 

  40. Silva, L. D. et al. HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer. Breast Cancer Res. 12, 1–13 (2010).

    Google Scholar 

  41. Sun, M. et al. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin. Cancer Res. 15, 4829–4837 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Koo, J. & Kim, S. EGFR and HER-2 status of non-small cell lung cancer brain metastasis and corresponding primary tumor. Neoplasma 58, 27–34 (2011).

    CAS  PubMed  Google Scholar 

  43. Milas, I. et al. Epidermal growth factor receptor, cyclooxygenase-2, and BAX expression in the primary non-small cell lung cancer and brain metastases. Clin. Cancer Res. 9, 1070–1076 (2003).

    CAS  PubMed  Google Scholar 

  44. Gaedcke, J. et al. Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod. Pathol. 20, 864–870 (2007).

    CAS  PubMed  Google Scholar 

  45. Wu, P.-F. et al. O6-Methylguanine-DNA methyltransferase expression and prognostic value in brain metastases of lung cancers. Lung Cancer 68, 484–490 (2010).

    PubMed  Google Scholar 

  46. Gomez-Roca, C. et al. Differential expression of biomarkers in primary non-small cell lung cancer and metastatic sites. J. Thorac. Oncol. 4, 1212–1220 (2009).

    PubMed  Google Scholar 

  47. Mehrotra, J. et al. Very high frequency of hypermethylated genes in breast cancer metastasis to bone, brain and lung. Clin. Cancer Res. 10, 3104–3109 (2004).

    CAS  PubMed  Google Scholar 

  48. Ding, L. et al. Genome remodeling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stark, A., Tongers, K., Maass, N., Mehdom, H. & Held-Feidt, J. Reduced metastasis suppressor gene mRNA expression in breast cancer brain metastases. J. Cancer Res. Clin. Oncol. 131, 191–198 (2005).

    CAS  PubMed  Google Scholar 

  50. Stark, A. et al. Reduced mRNA and protein expression of BCL-2 versus decreased mRNA and increased protein expression of BAX in breast cancer brain metastases: a real-time PCR and immunohistochemical evaluation. Nuerological Res. 28, 787–793 (2006).

    CAS  Google Scholar 

  51. Veenendaal, L. et al. Differential notch and TGFβ signaling in primary colorectal tumors and their corresponding metastases. Cell. Oncol. 30, 1–11 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Palmieri, D. et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol. Cancer Res. 7, 1438–1445 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie, T. X. et al. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res. 66, 3188–3196 (2006).

    CAS  PubMed  Google Scholar 

  54. Palmieri, D. et al. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res. 67, 4190–4198 (2007).

    CAS  PubMed  Google Scholar 

  55. Navab, R. et al. Co-overexpression of Met and Hepatocyte growth factor promotes systemic metastasis in NCI-H460 non-small cell lung carcinoma cells. Neoplasia 11, 1292–1300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nguyen, D. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, L., Sullivan, P., Goodman, J., Gunaratne, P. & Marchetti, D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res. 71, 645–654 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cocconi, G. et al. Combination therapy with platinum and etoposide of brain metastases from breast carcinoma. Cancer Invest. 8, 327–334 (1990).

    CAS  PubMed  Google Scholar 

  59. Boogerd, W., Dalesio, O., Bais, E. M. & van der Sande, J. J. Response of brain metastases from breast cancer to systemic chemotherapy. Cancer 69, 972–980 (1992).

    CAS  PubMed  Google Scholar 

  60. Rosner, D., Nemoto, T. & Lane, W. W. Chemotherapy induces regression of brain metastases in breast carcinoma. Cancer 58, 832–839 (1986).

    CAS  PubMed  Google Scholar 

  61. Oberhoff, C. et al. Topotecan chemotherapy in patients with breast cancer and brain metastases: results of a pilot study. Onkologie 24, 256–260 (2001).

    CAS  PubMed  Google Scholar 

  62. Kurt, M., Aksoy, S., Hayran, M. & Guler, N. A retrospective review of breast cancer patients with central nervous system metastases treated with capecitabine. J. Clin. Oncol. Abstr. 25, 1098 (2007).

    Google Scholar 

  63. Lin, N. et al. Phase II trial of lapatinib for brain metastases in patients with HER2+ breast cancer. J. Clin. Oncol. Abstr. 24, 503 (2006).

    Google Scholar 

  64. Lin, N. et al. Multicenter Phase II study of lapatinib in patients with brain metastases from HER-2 positive breast cancer. Clin. Cancer Res. 15, 1452–1459 (2009).

    CAS  PubMed  Google Scholar 

  65. Quirt, I. et al. Temozolomide for the treatment of metastatic melanoma. Curr. Oncol. 14, 27–33 (2007).

    Google Scholar 

  66. Ekenel, M., Hormigo, A., Peak, S., DeAngelis, L. & Abrey, L. Capecitabine therapy of central nervous system metastases from breast cancer. J. Neurooncol. 85, 223–227 (2007).

    CAS  PubMed  Google Scholar 

  67. Rivera, E. et al. Phase I study of capecitabine in combination with temozolomide in the treatment of patients with brain metastases of breast cancer. Cancer 107, 1348–1354 (2006).

    CAS  PubMed  Google Scholar 

  68. Mehta, M. et al. The role of chemotherapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J. Neurooncol. 96, 71–83 (2010).

    PubMed  Google Scholar 

  69. Ceresoli, G. et al. Gefitinib in patients with brain metastases from non-small cell lung cancer: a prospective trial. Ann. Oncol. 15, 1042–1047 (2004).

    CAS  PubMed  Google Scholar 

  70. Wu, C. et al. Gefitinib as palliative therapy for lung adenocarcinoma metastatic to the brain. Lung Cancer 57, 359–364 (2007).

    PubMed  Google Scholar 

  71. Togashi, Y. et al. Cerebrospinal fluid concentration of erlotinib and its active metabolite OSI-420 in patients with central nervous system metastases of non-small cell lung cancer. J. Thorac. Oncol. 5, 950–955 (2010).

    PubMed  Google Scholar 

  72. Omuro, A. M. et al. High incidence of disease recurrence in the brain and leptomeninges in patients with nonsmall cell lung carcinoma after response to gefitinib. Cancer 103, 2344–2348 (2005).

    CAS  PubMed  Google Scholar 

  73. Bria, E. et al. Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: the dark side of the moon? A meta-analysis of the randomized trials. Breast Cancer Res. Treat. 109, 231–239 (2008).

    CAS  PubMed  Google Scholar 

  74. Stemmler, H.-J. et al. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of the blood-brain barrier. Anticancer Drugs 18, 23–28 (2007).

    CAS  PubMed  Google Scholar 

  75. Polli, J. et al. The role of efflux and uptake transporters in N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GWS572016, Lapatinib) disposition and drug interactions. Drug Metab. Dispos. 36, 695–701 (2008).

    CAS  PubMed  Google Scholar 

  76. Lien, E. A., Wester, K., Lønning, P. E., Solheim, E. & Ueland, P. M. Distribution of tamoxifen and metabolites into brain tissue and brain metastases in breast cancer patients. Br. J. Cancer 63, 641–645 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Socinski, M. et al. Safety of bevicizumab in patients with non-small-cell lung cancer and brain metastases. J. Clin. Oncol. 27, 5255–5261 (2009).

    CAS  PubMed  Google Scholar 

  78. Stadler, W. et al. Safety and efficacy results of the advanced renal cell carcinoma sorafenib expanded access program in north America. Cancer 116, 1272–1280 (2010).

    CAS  PubMed  Google Scholar 

  79. Pajouhesh, H. & Lenz, G. R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2, 541–553 (2005).

    PubMed  PubMed Central  Google Scholar 

  80. Ohtsuki, S. & Terasaki, T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 24, 1745–1758 (2007).

    CAS  PubMed  Google Scholar 

  81. Szakacs, G., Paterson, J., Ludwig, J., Booth-Genthe, C. & Gottesman, M. Targeting multidrug resistance in cancer. Nature Rev. Drug Discov. 5, 219–234 (2006).

    CAS  Google Scholar 

  82. Noguchi, K., Katayama, K., Mitsuhashi, J. & Sugimoto, Y. Functions of the breast cancer resistance protein (BCRP/ABCG2) in chemotherapy. Adv. Drug Deliv. Rev. 61, 26–33 (2009).

    CAS  PubMed  Google Scholar 

  83. Lagas, J. et al. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol. Cancer Ther. 9, 319–326 (2010).

    CAS  PubMed  Google Scholar 

  84. Agarwal, S., Sane, R., Gallardo, J. L., Ohlfest, J. R. & Elmquist, W. F. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J. Pharmacol. Exp. Ther. 334, 147–155 (2010). This paper provides an excellent demonstration of roles of multiple BBB efflux transporters in restricting the brain distribution of chemotherapeutic drugs.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).

    CAS  PubMed  Google Scholar 

  86. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Ericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahmad, A., Gassmann, M. & Ogunshola, O. Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J. Cell. Physiol. 218, 612–622 (2009).

    PubMed  Google Scholar 

  88. Palmieri, D. et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer. Clin. Cancer Res. 15, 6148–6157 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Luu, T. et al. A Phase II trial of vorinostat (Suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin. Cancer Res. 14, 7138–7142 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ramalingam, S. et al. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 56–62 (2010).

    CAS  PubMed  Google Scholar 

  91. Baschnagel, A. et al. Vorinostat enhances the radiosensitivity of a breast cancer brain metastatic cell line grown in vitro and as intracranial xenografts. Mol. Cancer Ther. 8, 1589–1595 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gril, B. et al. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J. Natl. Cancer Inst. 100, 1092–1103 (2008). This is the first demonstration that a molecular therapeutic can prevent ERRB2+ experimental brain metastases.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Emanuel, S. et al. Cellular and in vivo activity of JNJ-28871063, a nonquinazoline pan-ErbB kinase inhibitor that crosses the blood-brain barrier and displays efficacy against intracranial tumors. Mol. Pharmacol. 73, 338–348 (2008).

    CAS  PubMed  Google Scholar 

  94. Kong, L.-Y. et al. A novel inhibitor of signal transducers and activators of transcription 3 activation is efficaceous against established central nervous system melanoma and inhibits regulatory T cells. Clin. Cancer Res. 14, 5759–5768 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hoffmann, J. et al. Sagopilone crosses the blood-brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro-oncology 11, 158–166 (2008).

    PubMed  Google Scholar 

  96. Ozduman, K., Wollman, G., Piepmeier, J. & van den Pol, A. N. Systemic vesicular stomatitus virus selectively destroys multifocal glioma and metastatic carcinoma in the brain. J. Neursci. 28, 1882–1893 (2008).

    CAS  Google Scholar 

  97. Yang, W. et al. Reovirus as an experimental therapeutic for brain and leptomeningeal metastases from breast cancer. Gene Therapy 11, 1579–1590 (2004).

    CAS  PubMed  Google Scholar 

  98. Massard, C. et al. Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann. Oncol. 21, 1027–1031 (2010).

    CAS  PubMed  Google Scholar 

  99. Cameron, D. et al. A Phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat. 112, 533–543 (2008).

    CAS  PubMed  Google Scholar 

  100. Heon, S. et al. Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic EGFR mutations treated with gefintib or erlotinib. Clin. Cancer Res. 16, 5873–5882 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Grinberg-Rashi, H. et al. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin. Cancer Res. 15, 1755–1761 (2009).

    CAS  PubMed  Google Scholar 

  102. Grasslin, O. et al. Nomogram to predict subsequent brain metastasis in patients with metastatic breast cancer. J. Clin. Oncol. 28, 2032–2037 (2010).

    Google Scholar 

  103. Sperduto, P. et al. A graded prosnostic assessment (GPA) for women with breast cancer and brain metastasssses. J. Clin. Oncol. Suppl. Abstr. 28 1028 (2010).

    Google Scholar 

  104. Thomas, F. et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm. Res. 26, 2486–2494 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu, J. et al. Phosphodiesterase type 5 inhibitors increase herceptin transport and treatment efficacy in mouse metastatic brain tumor models. PLoS ONE 5, e10108 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. Yuan, H. et al. Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int. J. Radiat. Oncol. Biol. Phys. 66, 860–866 (2006).

    PubMed  Google Scholar 

  107. Muldoon, L. et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J. Clin. Oncol. 16, 2295–2305 (2007).

    Google Scholar 

  108. Rosenberg, A. & Knox, S. Radiation sensitization with redox modulators: a promising approach. Int. J. Radiat. Oncol. Biol. Phys. 64, 343–354 (2006).

    CAS  PubMed  Google Scholar 

  109. Francis, D., Richards, G., Forouzannia, A., Mehta, M. & Kuntia, D. Motexafin gadolinium: a novel radiosensitizer for brain tumors. Expert Opin. Pharmacother. 10, 2171–2180 (2009).

    CAS  PubMed  Google Scholar 

  110. Russo, A. et al. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-Ribose) polymerase inhibitor E7016. Clin. Cancer Res. 15, 607–612 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Morgan, M. et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res. 70, 4972–4981 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gerster, K. et al. Targeting polo-like kinase 1 enhances radiation efficacy for head-and-neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 77, 253–260 (2010).

    CAS  PubMed  Google Scholar 

  113. Chung, E. et al. In vitro and in vivo radiosensitization with AZD6244 (ARRY-142886), an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 kinase. Clin. Cancer Res. 15, 3050–3057 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Camphausen, K. et al. Orthotopic growth of human glioma cells quantitatively and qualitatively influences radiation-induced changes in gene expression. Cancer Res. 65, 10389–10393 (2005).

    CAS  PubMed  Google Scholar 

  115. Chang, E. et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomized controlled trial. Lancet Oncol. 10, 1037–1044 (2009).

    PubMed  Google Scholar 

  116. Zhao, W. & Robbins, M. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr. Med. Chem. 16, 130–143 (2009).

    CAS  PubMed  Google Scholar 

  117. Fukuda, H. et al. Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death Differ. 11, 1166–1178 (2004).

    CAS  PubMed  Google Scholar 

  118. Limoli, C. et al. Cell-density-dependent regulation of neural precursor cells function. Proc. Natl Acad. Sci. USA 101, 16052–16057 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mildenberger, M., Beach, T., McGeer, E. & Ludgate, C. An animal model of prophylactic cranial irradiation: histologic effects at acute, early and delayed stages. Int. J. Radiat. Oncol. Biol. Phys. 18, 1051–1060 (1990).

    CAS  PubMed  Google Scholar 

  120. Monje, M., Toda, H. & Palmer, T. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    CAS  PubMed  Google Scholar 

  121. Schindler, M., Forbes, M., Robbins, M. & Riddle, D. Aging-dependent changes in the radiation response of the adult rat brain. Int. J. Radiat. Oncol. Biol. Phys. 70, 826–834 (2008).

    PubMed  Google Scholar 

  122. Khuntia, D., Brown, P., Li, J. & Mehta, M. Whole-brain radiotherapy in the management of brain metastasis. J. Clin. Oncol. 24, 1295–1304 (2006).

    CAS  PubMed  Google Scholar 

  123. Robbins, M. et al. The AT1 receptor antagonist, L-158, 809, prevents or ameliorates factionated whole-brain irradiation-induced cognitive impairment. Int. J. Radiat. Oncol. Biol. Phys. 73, 499–505 (2009).

    CAS  PubMed  Google Scholar 

  124. Clar, C., Royle, P. & Waugh, N. Adding piaglitazone to insulin containing regimens in type 2 diabetes: systematic review and meta-analysis. PLoS ONE 4, e6112 (2009).

    PubMed  PubMed Central  Google Scholar 

  125. Abourbih, S. et al. Effect of bibrates on lipid profiles and cardiovascular outcomes: a systematic review. Am. J. Med. 122, 962.e1–962.e8 (2009).

    Google Scholar 

  126. Zhao, W. et al. Administration of the peroxisomal proliferator-activated receptor (PPAR)g pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impariment. Int. J. Radiat. Oncol. Biol. Phys. 67, 6–9 (2007).

    CAS  PubMed  Google Scholar 

  127. Ramanan, S. et al. The PPARα agonist fenobibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain radiation. Int. J. Radiat. Oncol. Biol. Phys. 75, 870–877 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Atwood, T. et al. Quantitative magnetic resonance spectroscopy reveals a potential relationship between radiation-induced changes in rat brain metabolites and cognitive impairment. Radiat. Res. 168, 574–581 (2007).

    CAS  PubMed  Google Scholar 

  129. Kim, K. et al. High-throughput screening identifies two classes of antibiotics as radioprotectors: tetracyclines and fluoroquinolones. Clin. Cancer Res. 15, 7238–7245 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gleissner, B. & Chamberlain, M. Neoplastic meningitis. Lancet Neurol. 5, 443–451 (2006).

    PubMed  Google Scholar 

  131. Pedersen, P.-H. et al. Leptomeningeal tissue: a barrier against brain tumor cell invasion. J. Natl Cancer Inst. 86, 1593–1599 (1994).

    CAS  PubMed  Google Scholar 

  132. Herrlinger, U. et al. Leptomeningeal metastasis: survival and prognostic factors in 155 patients. J. Neurol. Sci. 223, 167–178 (2004).

    PubMed  Google Scholar 

  133. Kesari, S. & Batchelor, T. Leptomeningeal metastases. Neurol. Clin. 21, 25–66 (2003).

    PubMed  Google Scholar 

  134. Borgelt, B. et al. Ultra-rapid high dose irradiation schedules for the palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 7, 1633–1638 (1981).

    CAS  PubMed  Google Scholar 

  135. Borgelt, B. et al. The palliation of brain metastases: final results of the first two studies by the radiation therapy oncology group. Int. J. Radiat. Oncol. Biol. Phys. 6, 1–9 (1980).

    CAS  PubMed  Google Scholar 

  136. Patil, C. G., Pricola, K., Garg, S. K., Bryant, A. & Black, K. L. Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases. Cochrane Database Syst. Rev. CD006121 (2010).

  137. Kalkanis, S. et al. The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J. Neurooncol. 96, 33–44 (2010).

    PubMed  Google Scholar 

  138. Slotman, B. et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. New Engl. J. Med. 357, 664–672 (2007). This report establishes that prophylactic cranial irradiation can be used to prevent brain metastasis.

    CAS  PubMed  Google Scholar 

  139. Lester, J., MacBeth, F. & Coles, B. Prophylactic cranial irradiation for preventing brain metastases in patients undergoing radical treatment for non-small-cell lung cancer: a Cochrane review. Int. J. Radiat. Oncol. Biol. Phys. 63, 690–694 (2005).

    PubMed  Google Scholar 

  140. Sanghavi, S. et al. Radiosurgery for patients with brain metastases: a multi-institutional analysis, stratified by RTOG recursive partitioning analysis method. Int. J. Radiat. Oncol. Biol. Phys. 51, 426–434 (2001).

    CAS  PubMed  Google Scholar 

  141. Petrovich, Z., Yu, C., Giannotta, S. L., O'Day, S. & Apuzzo, M. L. Survival and pattern of failure in brain metastasis treated with stereotactic γ knife radiosurgery. J. Neurosurg. 97, 499–506 (2002).

    PubMed  Google Scholar 

  142. Folkman, J. & Camphausen, K. What does radiotherapy do to endothelial cells? Science 293, 227–228 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Program, Center for Cancer Research, US National Cancer Institute, and from the Center of Excellence grant W81XWH-062-0033 from the US Department of Defense Breast Cancer Research Program. The authors regret that space restrictions did not permit all citations to be included.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Steeg.

Ethics declarations

Competing interests

Research support was provided by GlaxoSmithKline and Millennium Pharmaceuticals.

Related links

Glossary

Parenchymal metastases

Secondary tumour growth in the essential and distinctive tissue of the brain.

Leptomeningeal metastases

Secondary tumour growth in the linings of the brain.

Cranial neuropathies

Abnormal function (either sensory or motor) of one of the 12 cranial nerves.

Stereotactic radiosurgery

Radiation therapy in which multiple convergent beams of high energy X-rays, γ-rays or protons are delivered to a discrete lesion in the brain.

Astrocytes

Brain cells that form a physical and metabolic support system for nerves while releasing communicative transmitters. When activated, astrocytes produce glial fibrillary acid protein intermediate filaments and shield neurons from damage.

Iron oxide particles

In magnetic resonance imaging, these supramagnetic particles generate a region emitting no radiofrequency signal, known as a signal void.

Temozolomide

A brain-permeable chemotherapeutic with alkylating activity.

Partial response

At least a 30% decrease in the sum of diameters of target lesions, taking as reference the baseline sum diameters.

Stable disease

Neither sufficient shrinkage to qualify for partial response nor sufficient increase to qualify for progressive disease, taking as reference the smallest sum diameters while on study.

Disease progression

At least a 20% increase in the sum of diameters of target lesions, taking as reference the smallest sum on study (this includes the baseline sum). In addition to the relative increase of 20%, the sum must also demonstrate an absolute increase of at least 5 mm.

Facilitated diffusion

The spontaneous passage of molecules or ions across a biological membrane passing through specific transmembrane integral proteins.

Epothilones

A new class of microtubule-active drugs.

Nomogram

A form of line chart showing scales for the variables involved in a particular formula so that corresponding values for each variable lie in a straight line intersecting all the scales.

Performance status

A measure of a patient's well-being defined as the amount of normal activity that the patient can maintain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steeg, P., Camphausen, K. & Smith, Q. Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11, 352–363 (2011). https://doi.org/10.1038/nrc3053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3053

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer