Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TGFβ signalling: a complex web in cancer progression

Key Points

  • Transforming growth factor-β (TGFβ) signalling is mediated by TGFβ ligands, type 1 and type 2 receptors, and Smad proteins. TGFβ also regulates non-Smad pathways.

  • TGFβ stimulation inhibits cancer cell proliferation in some cellular contexts and promotes it in others. Numerous factors are involved in TGFβ-regulated cell proliferation and keep its signalling pathways balanced.

  • In addition to perturbation of TGFβ signalling, disruption or mutation of regulators of TGFβ signalling can lead to a loss of balanced TGFβ signalling, resulting in the generation and progression of tumours.

  • TGFβ signalling in cancer cells has dual roles in the regulation of cell death and proliferation.

  • TGFβ signalling has crucial roles in the maintenance of self-renewal and tumorigenic activity of glioma-initiating cells and leukaemia-initiating cells, whereas the function of TGFβ signalling in breast cancer-initiating cells is controversial.

  • TGFβ signalling is involved in several cell responses during cancer cell metastasis, and cell type-dependent and context-dependent factors contribute to the regulation of tumour metastasis.

  • The TGFβ pathway has been targeted for cancer therapy using multiple strategies. Some of them are currently in clinical trials.

Abstract

The distortion of growth factor signalling is the most important prerequisite in tumour progression. Transforming growth factor-β (TGFβ) signalling regulates tumour progression by a tumour cell-autonomous mechanism or through tumour–stroma interaction, and has either a tumour-suppressing or tumour-promoting function depending on cellular context. Such inherent complexity of TGFβ signalling results in arduous, but promising, assignments for developing therapeutic strategies against malignant tumours. As numerous cellular context-dependent factors tightly maintain the balance of TGFβ signalling and contribute to the regulation of TGFβ-induced cell responses, in this Review we discuss how they maintain the balance of TGFβ signalling and how their collapse leads to tumour progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular signal transduction of TGFβ signalling.
Figure 2: The function of SKI and SKIL.
Figure 3: TGFβ and glioma-initiating cells.

Similar content being viewed by others

References

  1. Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Bornstein, S. et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J. Clin. Invest. 119, 3408–3419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsushima, H. et al. High levels of transforming growth factor β1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110, 375–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Wikström, P., Stattin, P., Franck-Lissbrant, I., Damber, J. E. & Bergh, A. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37, 19–29 (1998).

    Article  PubMed  Google Scholar 

  7. Walker, R. A. & Dearing, S. J. Transforming growth factor β1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur. J. Cancer 28, 641–644 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Friedman, E. et al. High levels of transforming growth factor β1 correlate with disease progression in human colon cancer. Cancer Epidemiol. Biomarkers Prev. 4, 549–554 (1995).

    CAS  PubMed  Google Scholar 

  9. Dalal, B. I., Keown, P. A. & Greenberg, A. H. Immunocytochemical localization of secreted transforming growth factor-β1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am. J. Pathol. 143, 381–389 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Picon, A., Gold, L. I., Wang, J., Cohen, A. & Friedman, E. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor β1. Cancer Epidemiol. Biomarkers Prev. 7, 497–504 (1998).

    CAS  PubMed  Google Scholar 

  11. Bierie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Rev. Cancer 6, 506–520 (2006). This Review covers the roles of TGFβ signalling in the tumour microenvironment and discusses the paradoxical effects of this cytokine in tumour progression: tumour promotion compared with tumour suppression.

    Article  CAS  PubMed  Google Scholar 

  12. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Rifkin, D. B. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. J. Biol. Chem. 280, 7409–7412 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Goumans, M. J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell 12, 817–828 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Daly, A. C., Randall, R. A. & Hill, C. S. Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell. Biol. 28, 6889–6902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Miyazawa, K., Shinozaki, M., Hara, T., Furuya, T. & Miyazono, K. Two major Smad pathways in TGF-β superfamily signalling. Genes Cells 7, 1191–1204 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Koinuma, D. et al. Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. Mol. Cell. Biol. 29, 172–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Koinuma, D. et al. Promoter-wide analysis of Smad4 binding sites in human epithelial cells. Cancer Sci. 100, 2133–2142 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, X. Chen, Y. G. & Feng, X. H. in The TGF-β Family (eds Derynck, R. & Miyazono, K.) 287–332 (Cold Spring Harbor Laboratory Press, New York, 2008).

    Google Scholar 

  25. Ikushima, H. et al. An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling. EMBO J. 27, 2955–2965 (2008). This paper suggests a new mechanism for regulating some of the TGFβ-induced cellular responses. HHM targets some of the Smad-binding transcriptional cofactors and regulates TGFβ signalling in a synexpression group-selective manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Massague, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ikushima, H. & Miyazono, K. Cellular context-dependent “colors” of transforming growth factor-β signaling. Cancer Sci. 101, 306–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Janknecht, R., Wells, N. J. & Hunter, T. TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev. 12, 2114–2119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng, X. H., Zhang, Y., Wu, R. Y. & Derynck, R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-induced transcriptional activation. Genes Dev. 12, 2153–2163 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, C. R., Kang, Y., Siegel, P. M. & Massague, J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110, 19–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Moustakas, A. & Heldin, C. H. Non-Smad TGF-β signals. J. Cell Sci. 118, 3573–3584 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y. E. Non-Smad pathways in TGF-β signaling. Cell Res. 19, 128–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Datto, M. B. et al. Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl Acad. Sci. USA 92, 5545–5549 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371, 257–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Yagi, K. et al. c-myc is a downstream target of the Smad pathway. J. Biol. Chem. 277, 854–861 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Azar, R., Alard, A., Susini, C., Bousquet, C. & Pyronnet, S. 4E-BP1 is a target of Smad4 essential for TGFβ-mediated inhibition of cell proliferation. EMBO J. 28, 3514–3522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deheuninck, J. & Luo, K. Ski and SnoN, potent negative regulators of TGF-β signaling. Cell Res. 19, 47–57 (2009). This review discusses recent findings on the biological functions of SKI and SKIL and their mechanisms of action. It also addresses how expression levels of these factors are regulated.

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki, H. et al. c-Ski inhibits the TGF-β signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene 23, 5068–5076 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Pan, D., Zhu, Q. & Luo, K. SnoN functions as a tumour suppressor by inducing premature senescence. EMBO J. 28, 3500–3513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, Q. et al., Dual role of SnoN in mammalian tumorigenesis. Mol. Cell. Biol. 27, 324–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Heider, T. R., Lyman, S., Schoonhoven, R. & Behrns, K. E. Ski promotes tumor growth through abrogation of transforming growth factor-β signaling in pancreatic cancer. Ann. Surg. 246, 61–68 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morishita, K. et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc. Natl Acad. Sci. USA. 89, 3937–3941 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kurokawa, M. et al. The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 394, 92–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Mochizuki, N. et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood 96, 3209–3214 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Takahata, M. et al. SKI and MEL1 cooperate to inhibit transforming growth factor-β signal in gastric cancer cells. J. Biol. Chem. 284, 3334–3344 (2009). This paper reports that MEL1, a novel regulator of SKI, stabilizes an inactive SMAD3–SKI complex on the promoter of TGFβ target genes and inhibits TGFβ signalling in gastric cancer cells.

    Article  CAS  PubMed  Google Scholar 

  46. Ohno, H. Pathogenetic role of BCL6 translocation in B-cell non-Hodgkin's lymphoma. Histol. Histopathol. 19, 637–650 (2004).

    CAS  PubMed  Google Scholar 

  47. Pasqualucci, L. et al. Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk. Lymphoma 44, S5–S12 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, D. et al. BCL6 represses Smad signaling in transforming growth factor-β resistance. Cancer Res. 68, 783–789 (2008). This paper indicates that overexpression of BCL6 contributes to the resistance of B cell lymphoma to TGFβ-mediated growth inhibition.

    Article  CAS  PubMed  Google Scholar 

  49. Mori, N. et al. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor β signaling through interaction with CREB-binding protein/p300. Blood 97, 2137–2144 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, D. K., Kim, B. C., Brady, J. N., Jeang, K. T. & Kim, S. J. Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-β signaling by blocking the association of Smad proteins with Smad-binding element. J. Biol. Chem. 277, 33766–33775 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-β superfamily signaling. Curr. Opin. Genet. Dev. 13, 43–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Chi, X. Z. et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21WAF1/Cip1 expression in cooperation with transforming growth factor β-activated SMAD. Mol. Cell. Biol. 25, 8097–8107 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yano, T. et al. The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor β-induced apoptosis. Mol. Cell. Biol. 26, 4474–4488 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Battegay, E. J., Raines, E. W., Seifert, R. A., Bowen-Pope, D. F. & Ross, R. TGF-β induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63, 515–524 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Bruna, A. et al. High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11, 147–160 (2007). This study demonstrates the pathological importance of epigenetic regulation of TGFβ signalling through methylation of Smad-binding elements in CpG islands of TGFβ target genes.

    Article  CAS  PubMed  Google Scholar 

  56. Matsuyama, S. et al. SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells. Cancer Res. 63, 7791–7798 (2003).

    CAS  PubMed  Google Scholar 

  57. Lu, Q. R. et al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc. Natl Acad. Sci. USA 98, 10851–10856 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jang, C. W. et al. TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase. Nature Cell Biol. 4, 51–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Takekawa, M. et al. Smad-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO J. 21, 6473–6482 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ohgushi, M. et al. Transforming growth factor β-dependent sequential activation of Smad, Bim, and caspase-9 mediates physiological apoptosis in gastric epithelial cells. Mol. Cell. Biol. 25, 10017–10028 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA 101, 6164–6169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ehata, S. et al., Transforming growth factor-β promotes survival of mammary carcinoma cells through induction of antiapoptotic transcription factor DEC1. Cancer Res. 67, 9694–9703 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Currie, M. J. et al. Expression of vascular endothelial growth factor D is associated with hypoxia inducible factor (HIF-1α) and the HIF-1α target gene DEC1, but not lymph node metastasis in primary human breast carcinomas. J. Clin. Pathol. 57, 829–834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chakrabarti, J. et al. The transcription factor DEC1 (stra13, SHARP2) is associated with the hypoxic response and high tumour grade in human breast cancers. Br. J. Cancer 91, 954–958 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kiyono, K. et al. Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 69, 8844–8852 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Eisenberg-Lerner, A. & Kimchi, A. The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis 14, 376–391 (2009).

    Article  PubMed  Google Scholar 

  67. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Iwasaki, H. & Suda, T. Cancer stem cells and their niche. Cancer Sci. 100, 1166–1172 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Yamazaki, S. et al. TGF-β as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113, 1250–1256 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Tang, B. et al. Transforming growth factor-β can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res. 67, 8643–8652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008). This paper is the first to report a link between EMT and stem cell characteristics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Watabe, T. & Miyazono, K. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res. 19, 103–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Golestaneh, N. & Mishra, B. TGF-β, neuronal stem cells and glioblastoma. Oncogene 24, 5722–5730 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Peñuelas, S. et al. TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15, 315–327 (2009).

    Article  PubMed  CAS  Google Scholar 

  75. Ikushima, H. et al. Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5, 504–514 (2009). References 74 and 75 provide evidence that TGFβ signalling has crucial roles in the maintenance of self-renewal and tumorigenicity of glioma-initiating cells.

    Article  CAS  PubMed  Google Scholar 

  76. Kamachi, Y., Uchikawa, M. & Kondoh, H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16, 182–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Ferri, A. L. et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, G. et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer 5, 67 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hau, P. et al. Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17, 201–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Lim, D. A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Naka, K. et al. TGF-β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463, 676–680 (2010). This study shows that TGFβ signalling has a crucial role in the maintenance of leukaemia-initiating cells. It suggests that inhibition of the TGFβ pathway might represent a new therapeutic approach for patients with CML.

    Article  CAS  PubMed  Google Scholar 

  86. Hasegawa, Y. et al. Transforming growth factor-β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91, 964–971 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Tuxhorn, J. A., McAlhany, S. J., Yang, F., Dang, T. D. & Rowley, D. R. Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res. 62, 6021–6025 (2002).

    CAS  PubMed  Google Scholar 

  88. Stearns, M. E., Garcia, F. U., Fudge, K., Rhim, J. & Wang, M. Role of interleukin 10 and transforming growth factor β1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin. Cancer Res. 5, 711–720 (1999).

    CAS  PubMed  Google Scholar 

  89. Ueki, N. et al. Excessive production of transforming growth-factor β 1 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochim. Biophys. Acta. 1137, 189–196 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Sánchez-Elsner, T. et al. Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J. Biol. Chem. 276, 38527–38535 (2001).

    Article  PubMed  Google Scholar 

  92. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Schwarte-Waldhoff, I. et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc. Natl Acad. Sci. USA 97, 9624–9629 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Komuro, A. et al. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor β signaling. J. Natl. Cancer Inst. 101, 592–604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kiyono, K. et al. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-β signaling in diffuse-type gastric carcinoma. Cancer Sci. 100, 1809–1816 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  97. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Moustakas, A. & Heldin, C. H. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98, 1512–1520 (2007). References 96, 97 and 98 cover in detail mechanisms of EMT and discuss the physiological and pathological roles of EMT.

    Article  CAS  PubMed  Google Scholar 

  99. Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G. & Margolis, B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol. 5, 137–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Oft, M. et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 10, 2462–2477 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Janda, E. et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156, 299–313 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vogelmann, R. et al. TGFβ-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J. Cell Sci. 118, 4901–4912 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Horiguchi, K. et al. Role of Ras signaling in the induction of snail by transforming growth factor-β. J. Biol. Chem. 284, 245–253 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Araki, S. et al. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J. Clin. Invest. 120, 290–302 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Adorno, M. et al. A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Papageorgis, P. et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res. 70, 968–978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nature Med. 9, 964–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Buijs, J. T. et al. Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res. 67, 8742–8751 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Buijs, J. T. et al. BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am. J. Pathol. 171, 1047–1057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Saito, R. A. et al. Thyroid transcription factor-1 inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res. 69, 2783–2791 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Li, C. et al. Transforming growth factor-β inhibits pulmonary surfactant protein B gene transcription through SMAD3 interactions with NKX2.1 and HNF-3 transcription factors. J. Biol. Chem. 277, 38399–38408 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Minoo, P. et al. SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains. Nucleic Acids Res. 36, 179–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Tan, D. et al. Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small cell lung cancer: a high-throughput tissue microarray and immunohistochemistry study. Hum. Pathol. 34, 597–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008). This paper demonstrates the role of TGFβ signalling in enabling the pulmonary metastasis of breast cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Guise, T. A. et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Invest. 98, 1544–1549 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yin, J. J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kondo, H., Guo, J. & Bringhurst, F. R. Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone-related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells. J. Bone Miner. Res. 17, 1667–1679 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Kang, Y., Chen, C. R. & Massague, J. A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11, 915–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Kingsley, L. A., Fournier, P. G., Chirgwin, J. M. & Guise, T. A. Molecular biology of bone metastasis. Mol. Cancer Ther. 6, 2609–2617 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Ehata, S. et al. Ki26894, a novel transforming growth factor-b type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 98, 127–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Bandyopadhyay, A. et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-β type I receptor kinase inhibitor. Cancer Res. 66, 6714–6721 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Ge, R. et al. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-β type I receptor kinase in vivo. Clin. Cancer Res. 12, 4315–4330 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl Acad. Sci. USA 100, 8621–8623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yingling, J. M., Blanchard, K. L. & Sawyer, J. S. Development of TGF-β signalling inhibitors for cancer therapy. Nature Rev. Drug Discov. 3, 1011–1022 (2004). This review covers various TGFβ inhibitors and discusses the rationale for evaluating them as cancer therapeutics.

    Article  CAS  Google Scholar 

  127. Schlingensiepen, K. H. et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev. 17, 129–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Santamaria-Martínez, A. et al. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp. Cell Res. 315, 3004–3013 (2009).

    Article  PubMed  CAS  Google Scholar 

  129. Kabashima, A. et al. Side population of pancreatic cancer cells predominates in TGF-b-mediated epithelial to mesenchymal transition and invasion. Int. J. Cancer. 124, 2771–2779 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those colleagues whose publications could not be cited because of space limitations. Work from the authors' laboratory is supported by KAKENHI (Grant-in-Aid for Scientific Research) on Priority Areas 'New strategies for cancer therapy based on advancement of basic research' and the Global COE Program (Integrative Life Science Based on the Study of Biosignalling Mechanisms) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Miyazono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

BCL6

CTGF

IL11

LIF

MYC

FURTHER INFORMATION

Kohei Miyazono's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikushima, H., Miyazono, K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10, 415–424 (2010). https://doi.org/10.1038/nrc2853

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2853

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer