Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Parallel progression of primary tumours and metastases

Abstract

Systemic cancer progression is accounted for in two basic models. The prevailing archetype places the engine of cancer progression within the primary tumour before metastatic dissemination of fully malignant cells. The second posits parallel, independent progression of metastases arising from early disseminated tumour cells. This Perspective draws together data from disease courses, tumour growth rates, autopsy studies, clinical trials and molecular genetic analyses of primary and disseminated tumour cells in support of the parallel progression model. Consideration of this model urges review of current diagnostic and therapeutic routines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Late dissemination and metastatic cascade model (breast cancer).
Figure 2: Parallel progression model (breast cancer).
Figure 3: Growth rates in human cancer.
Figure 4: Consequences of the two models for therapy research and clinical decisions.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008).

    PubMed  Google Scholar 

  2. Arteaga, C. L. & Baselga, J. Tyrosine kinase inhibitors: why does the current process of clinical development not apply to them? Cancer Cell 5, 525–531 (2004).

    CAS  PubMed  Google Scholar 

  3. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    CAS  PubMed  Google Scholar 

  4. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    CAS  PubMed  Google Scholar 

  5. Weinstein, I. B. & Joe, A. K. Mechanisms of disease: Oncogene addiction — a rationale for molecular targeting in cancer therapy. Nature Clin. Pract Oncol. 3, 448–457 (2006).

    CAS  Google Scholar 

  6. Klein, G. Foulds' dangerous idea revisited: the multistep development of tumors 40 years later. Adv. Cancer Res. 72, 1–23 (1998).

    CAS  PubMed  Google Scholar 

  7. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  8. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    CAS  PubMed  Google Scholar 

  9. Olivier, M. et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin. Cancer Res. 12, 1157–1167 (2006).

    CAS  PubMed  Google Scholar 

  10. Weinberg, R. A. The many faces of tumor dormancy. APMIS 116, 548–551 (2008).

    PubMed  Google Scholar 

  11. Bross, I. D., Viadana, E. & Pickren, J. Do generalized metastases occur directly from the primary? J. Chronic Dis. 28, 149–159 (1975).

    CAS  PubMed  Google Scholar 

  12. Weinberg, R. A. Mechanisms of malignant progression. Carcinogenesis 29, 1092–1095 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Collins, V. P., Loeffler, R. K. & Tivey, H. Observations on growth rates of human tumors. Am. J. Roentgenol. Radium Ther. Nucl. Med. 76, 988–1000 (1956).

    CAS  PubMed  Google Scholar 

  14. Friberg, S. & Mattson, S. On the growth rates of human malignant tumors: implications for medical decision making. J. Surg. Oncol. 65, 284–297 (1997).

    CAS  PubMed  Google Scholar 

  15. Greene, F. L. & Sobin, L. H. The staging of cancer: a retrospective and prospective appraisal. CA Cancer J. Clin. 58, 180–190 (2008).

    PubMed  Google Scholar 

  16. Loberg, R. D., Bradley, D. A., Tomlins, S. A., Chinnaiyan, A. M. & Pienta, K. J. The lethal phenotype of cancer: the molecular basis of death due to malignancy. CA Cancer J. Clin. 57, 225–241 (2007).

    PubMed  Google Scholar 

  17. Spratt, J. S., Meyer, J. S. & Spratt, J. A. Rates of growth of human neoplasms: Part II. J. Surg. Oncol. 61, 68–83 (1996).

    CAS  PubMed  Google Scholar 

  18. Spratt, J. S. Jr & Spratt, T. L. Rates of growth of pulmonary metastases and host survival. Ann. Surg. 159, 161–171 (1964).

    PubMed  PubMed Central  Google Scholar 

  19. Kusama, S., Spratt, J. S. Jr, Donegan, W. L., Watson, F. R. & Cunningham, C. The gross rates of growth of human mammary carcinoma. Cancer 30, 594–599 (1972).

    CAS  PubMed  Google Scholar 

  20. Finlay, I. G., Meek, D., Brunton, F. & McArdle, C. S. Growth rate of hepatic metastases in colorectal carcinoma. Br. J. Surg. 75, 641–644 (1988).

    CAS  PubMed  Google Scholar 

  21. Peer, P. G., van Dijck, J. A., Hendriks, J. H., Holland, R. & Verbeek, A. L. Age-dependent growth rate of primary breast cancer. Cancer 71, 3547–3551 (1993).

    CAS  PubMed  Google Scholar 

  22. Engel, J. et al. The process of metastasisation for breast cancer. Eur. J. Cancer 39, 1794–1806 (2003).

    CAS  PubMed  Google Scholar 

  23. Holzel, D., Eckel, R. & Engel, J. Metastasierung beim kolorektalen Karzinom: Häufigkeiten, Prognose und Folgerungen. Chirurg. 28 Sep 2008 [epub ahead of print] (in German).

  24. Abbruzzese, J. L. et al. Unknown primary carcinoma: natural history and prognostic factors in 657 consecutive patients. J. Clin. Oncol. 12, 1272–1280 (1994).

    CAS  PubMed  Google Scholar 

  25. van de Wouw, A. J., Janssen-Heijnen, M. L., Coebergh, J. W. & Hillen, H. F. Epidemiology of unknown primary tumours; incidence and population-based survival of 1285 patients in Southeast Netherlands, 1984–1992 Eur. J. Cancer 38, 409–413 (2002).

    CAS  PubMed  Google Scholar 

  26. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McAllister, S. S. et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133, 994–1005 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Taniguchi, T. et al. Serum concentrations of hepatocyte growth factor in breast cancer patients. Clin. Cancer Res. 1, 1031–1034 (1995).

    CAS  PubMed  Google Scholar 

  29. Schlimok, G. et al. Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc. Natl Acad. Sci. USA 84, 8672–8676 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Klein, C. A. The systemic progression of human cancer: a focus on the individual disseminated cancer cell — the unit of selection. Adv. Cancer Res. 89, 35–67 (2003).

    CAS  PubMed  Google Scholar 

  31. Pantel, K., Cote, R. J. & Fodstad, O. Detection and clinical importance of micrometastatic disease. J. Natl Cancer Inst. 91, 1113–1124 (1999).

    CAS  PubMed  Google Scholar 

  32. Fehm, T. et al. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107, 885–892 (2006).

    PubMed  Google Scholar 

  33. Riethdorf, S., Wikman, H. & Pantel, K. Biological relevance of disseminated tumor cells in cancer patients. Int. J. Cancer 123, 1991–2006 (2008).

    CAS  PubMed  Google Scholar 

  34. Klein, C. A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl Acad. Sci. USA 96, 4494–4499 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Klein, C. A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nature Biotechnol. 20, 387–392 (2002).

    CAS  Google Scholar 

  36. Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  37. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stoecklein, N. H. et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13, 441–453 (2008).

    CAS  PubMed  Google Scholar 

  39. Weckermann, D. et al. Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J. Clin. Oncol. 23 Feb 2009 (doi: 10.1200/JCO.2008.17.0563).

    PubMed  Google Scholar 

  40. Klein, C. A. et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360, 683–689 (2002).

    CAS  PubMed  Google Scholar 

  41. Albanese, I. et al. Heterogeneity within and between primary colorectal carcinomas and matched metastases as revealed by analysis of Ki-ras and p53 mutations. Biochem. Biophys. Res. Commun. 325, 784–791 (2004).

    CAS  PubMed  Google Scholar 

  42. Artale, S. et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. 26, 4217–4219 (2008).

    PubMed  Google Scholar 

  43. Oudejans, J. J., Slebos, R. J., Zoetmulder, F. A., Mooi, W. J. & Rodenhuis, S. Differential activation of ras genes by point mutation in human colon cancer with metastases to either lung or liver. Int. J. Cancer 49, 875–879 (1991).

    CAS  PubMed  Google Scholar 

  44. Badalian, G. et al. Phenotype of bone metastases of non-small cell lung cancer: epidermal growth factor receptor expression and K-RAS mutational status. Pathol. Oncol. Res. 13, 99–104 (2007).

    CAS  PubMed  Google Scholar 

  45. Kalikaki, A. et al. Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br. J. Cancer 99, 923–929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gow, C. H. et al. Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer. Ann. Oncol. 16 Dec 2008 (doi: 10.1093/annonc/mdn679).

    PubMed  Google Scholar 

  47. Becker, T. E. et al. The genomic heritage of lymph node metastases: implications for clinical management of patients with breast cancer. Ann. Surg. Oncol. 15, 1056–1063 (2008).

    PubMed  Google Scholar 

  48. Bissig, H. et al. Evaluation of the clonal relationship between primary and metastatic renal cell carcinoma by comparative genomic hybridization. Am. J. Pathol. 155, 267–274 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuukasjarvi, T. et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57, 1597–1604 (1997).

    CAS  PubMed  Google Scholar 

  50. Katona, T. M. et al. Genetically heterogeneous and clonally unrelated metastases may arise in patients with cutaneous melanoma. Am. J. Surg. Pathol. 31, 1029–1037 (2007).

    PubMed  Google Scholar 

  51. Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weigelt, B. et al. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc. Natl Acad. Sci. USA 100, 15901–15905 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hunter, K. Host genetics influence tumour metastasis. Nature Rev. Cancer 6, 141–146 (2006).

    CAS  Google Scholar 

  54. Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    PubMed  Google Scholar 

  55. Zhao, L. & Vogt, P. K. Class I PI3K in oncogenic cellular transformation. Oncogene 27, 5486–5496 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Baudis, M. Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7, 226 (2007).

    PubMed  PubMed Central  Google Scholar 

  57. Fidler, I. J. Selection of successive tumour lines for metastasis. Nat. New Biol. 242, 148–149 (1973).

    CAS  PubMed  Google Scholar 

  58. Viadana, E., Cotter, R., Pickren, J. W. & Bross, I. D. An autopsy study of metastatic sites of breast cancer. Cancer Res. 33, 179–181 (1973).

    CAS  PubMed  Google Scholar 

  59. Weiss, L. et al. Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J. Pathol. 150, 195–203 (1986).

    CAS  PubMed  Google Scholar 

  60. Weiss, L. et al. Metastatic patterns of renal carcinoma: an analysis of 687 necropsies. J. Cancer Res. Clin. Oncol. 114, 605–612 (1988).

    CAS  PubMed  Google Scholar 

  61. Klein, C. A. & Holzel, D. Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5, 1788–1798 (2006).

    CAS  PubMed  Google Scholar 

  62. Halsted, W. S. I. The results of radical operations for the cure of carcinoma of the breast. Ann. Surg. 46, 1–19 (1907).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fisher, B. et al. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N. Engl. J. Med. 347, 567–575 (2002).

    PubMed  Google Scholar 

  64. Rudenstam, C. M. et al. Randomized trial comparing axillary clearance versus no axillary clearance in older patients with breast cancer: first results of International Breast Cancer Study Group Trial 10–93 J. Clin. Oncol. 24, 337–344 (2006).

    PubMed  Google Scholar 

  65. Veronesi, U., Marubini, E., Mariani, L., Valagussa, P. & Zucali, R. The dissection of internal mammary nodes does not improve the survival of breast cancer patients. 30-year results of a randomised trial. Eur. J. Cancer 35, 1320–1325 (1999).

    CAS  PubMed  Google Scholar 

  66. Kitchener, H., Swart, A. M., Qian, Q., Amos, C. & Parmar, M. K. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet 373, 125–136 (2009).

    CAS  PubMed  Google Scholar 

  67. Stemmler, H. J. et al. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anticancer Drugs 18, 23–28 (2007).

    CAS  PubMed  Google Scholar 

  68. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  69. Joensuu, H. et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N. Engl. J. Med. 354, 809–820 (2006).

    CAS  PubMed  Google Scholar 

  70. Lin, N. U. & Winer, E. P. Brain metastases: the HER2 paradigm. Clin. Cancer Res. 13, 1648–1655 (2007).

    CAS  PubMed  Google Scholar 

  71. Ulmer, A. et al. Immunomagnetic enrichment, genomic characterization, and prognostic impact of circulating melanoma cells. Clin. Cancer Res. 10, 531–537 (2004).

    CAS  PubMed  Google Scholar 

  72. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    CAS  PubMed  Google Scholar 

  73. Dawood, S. et al. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system? Cancer 113, 2422–2430 (2008).

    PubMed  Google Scholar 

  74. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Scheel, C., Onder, T., Karnoub, A. & Weinberg, R. A. Adaptation versus selection: the origins of metastatic behavior. Cancer Res. 67, 11476–11479; discussion 11479–80 (2007).

    CAS  PubMed  Google Scholar 

  76. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    CAS  PubMed  Google Scholar 

  77. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Migrating cancer stem cells — an integrated concept of malignant tumour progression. Nature Rev. Cancer 5, 744–749 (2005).

    CAS  Google Scholar 

  78. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Rev. Cancer 8, 755–768 (2008).

    CAS  Google Scholar 

  79. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fiegler, H. et al. High resolution array-CGH analysis of single cells. Nucleic Acids Res. 35, e15 (2007).

    PubMed  Google Scholar 

  81. Fuhrmann, C. et al. High-resolution array comparative genomic hybridization of single micrometastatic tumor cells. Nucleic Acids Res. 36, e39 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Klein, C. A. The direct molecular analysis of metastatic precursor cells in breast cancer: A chance for a better understanding of metastasis and for personalised medicine. Eur. J. Cancer 44, 2721–2725 (2008).

    CAS  PubMed  Google Scholar 

  83. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer 4, 448–456 (2004).

    CAS  Google Scholar 

  84. Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Rev. Cancer 8, 329–340 (2008).

    CAS  Google Scholar 

  85. Solakoglu, O. et al. Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc. Natl Acad. Sci. USA 99, 2246–2251 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Norton, L., Simon, R., Brereton, H. D. & Bogden, A. E. Predicting the course of Gompertzian growth. Nature 264, 542–545 (1976).

    CAS  PubMed  Google Scholar 

  87. Pence, J. C., Kizilbash, A. M., Kerns, B. J., Marks, J. R. & Iglehart, J. D. Proliferation index in various stages of breast cancer determined by Ki-67 immunostaining. J. Surg. Oncol. 48, 11–20 (1991).

    CAS  PubMed  Google Scholar 

  88. Bolin, S., Nilsson, E. & Sjodahl, R. Carcinoma of the colon and rectum — growth rate. Ann. Surg. 198, 151–158 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Schmid, H. P., McNeal, J. E. & Stamey, T. A. Observations on the doubling time of prostate cancer. The use of serial prostate-specific antigen in patients with untreated disease as a measure of increasing cancer volume. Cancer 71, 2031–2040 (1993).

    CAS  PubMed  Google Scholar 

  90. Cheng, L. et al. Cell proliferation in prostate cancer patients with lymph node metastasis: a marker for progression. Clin. Cancer Res. 5, 2820–2823 (1999).

    CAS  PubMed  Google Scholar 

  91. Cheville, J. C. et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 95, 1028–1036 (2002).

    PubMed  Google Scholar 

  92. Glaves, D., Huben, R. P. & Weiss, L. Haematogenous dissemination of cells from human renal adenocarcinomas. Br. J. Cancer 57, 32–35 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tarin, D. et al. Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 44, 3584–3592 (1984).

    CAS  PubMed  Google Scholar 

  94. Hadfield, G. The dormant cancer cell. BMJ 4888, 607–610 (1954).

    Google Scholar 

  95. Pantel, K. et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl Cancer Inst. 85, 1419–1424 (1993).

    CAS  PubMed  Google Scholar 

  96. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ince, T. A. et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 12, 160–170 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank D. Hölzel for insightful discussions about data from the Munich tumour registry and mathematical modelling of cancer progression. I am indebted to A. Perry for his critical reading of the manuscript and his invaluable suggestions to improve my English. I thank S. Pausch for her help with the figures. Finally, I thank all present and former members of the team for their enthusiastic work and our daily discussions. This work was supported by the Bavarian State Ministry of Sciences, Research and the Arts.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

trastuzumab

FURTHER INFORMATION

Christoph A. Klein's homepage

Catalogue of somatic mutations in cancer

Tumour-specific analysis

Tumour-specific analysis (breast cancer)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, C. Parallel progression of primary tumours and metastases. Nat Rev Cancer 9, 302–312 (2009). https://doi.org/10.1038/nrc2627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing