Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innovations in image-guided radiotherapy

An Erratum to this article was published on 06 December 2007

Key Points

  • In order to assure proper coverage of the clinical target volume (CTV) by radiation, a margin needs to be added to compensate for daily positioning errors and internal motion of organs, resulting in the planning target volume (PTV). The PTV therefore includes normal tissues near the tumour, to which radiation is intentionally delivered.

  • The dose of radiotherapy that is necessary to control a tumour is often not delivered because of a high probability of complications in nearby normal tissues. This problem can be tackled by the generation of conformal dose distributions that tightly match the volume of the PTV and/or by decreasing the amount of normal tissue in the PTV.

  • Image-guided radiotherapy (IGRT) is defined as frequent imaging in the treatment room that allows treatment decisions to be made on the basis of these images. IGRT aims at decreasing CTV-to-PTV margins from centimetres to millimetres.

  • The synergy between conformal radiotherapy (CRT) and IGRT has drastically improved the quality of radiotherapy and has broadened its possibilities and indications. Clinical implementations of CRT–IGRT have enabled dose escalation, conformal sparing and non-uniform dose distributions, and initiated a revision of fractionation schedules.

  • Research to improve image quality in radiotherapy is not new, but developments of software to quantify target localization errors, on the basis of in-room imaging and hardware allowing automated set-up, have stimulated mainstream clinical application of IGRT.

  • IGRT makes use of many different imaging techniques, using modalities ranging from planar imaging to fluoroscopy to cone-beam CT, and following procedures as simple as using a single set-up image or as complex as intra-fraction tumour tracking.

  • IGRT can be applied for managing of inter-fraction as well as intra-fraction geometric set-up uncertainties and for adapting treatments to tumour responses.

Abstract

The limited ability to control for the location of a tumour compromises the accuracy with which radiation can be delivered to tumour-bearing tissue. The resultant requirement for larger treatment volumes to accommodate target uncertainty restricts the radiation dose because more surrounding normal tissue is exposed. With image-guided radiotherapy (IGRT) these volumes can be optimized and tumoricidal doses can be delivered, achieving maximal tumour control with minimal complications. Moreover, with the ability of high-precision dose delivery and real-time knowledge of the target volume location, IGRT has initiated the exploration of new indications for radiotherapy, some of which were previously considered infeasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Megavolt computed tomography imaging.
Figure 2: Adaptive radiotherapy.
Figure 3: Combined computed tomography and daily MVCT image data.
Figure 4: Intensity-modulated radiotherapy and motion.

Similar content being viewed by others

References

  1. Brenner, D. J., Hlatky, L. R., Hahnfeldt, P. J., Huang, Y. & Sachs, R. K. The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat. Res. 150, 83–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. International Commission on Radiation Units and Measurements. Prescribing, Recording and Reporting Photon Beam Therapy, Report 50 (ICRU, Bethesda, 1993).

  3. International Commission on Radiation Units and Measurements. Prescribing, Recording and Reporting Photon Beam Therapy, Report 62 (ICRU, Bethesda, 1999). References 2 and 3 describe the rationale behind the concept of treatment margins in radiotherapy and provide a clear definition of the different volumes.

  4. Wang, D. et al. Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 65, 143–151 (2006).

    Article  PubMed  Google Scholar 

  5. Balter, J. M. & Kessler, M. L. Imaging and alignment for image-guided radiation therapy. J. Clin. Oncol. 25, 931–937 (2007). This review explores the issues surrounding the use of images and image registration for treatment planning and treatment verification in radiotherapy.

    Article  PubMed  Google Scholar 

  6. Gregoire, V. Is there any future in radiotherapy planning without the use of PET: unraveling the myth. Radiother. Oncol. 73, 261–263 (2004).

    Article  PubMed  Google Scholar 

  7. Rothschild, S. et al. PET/CT staging followed by Intensity-Modulated Radiotherapy (IMRT) improves treatment outcome of locally advanced pharyngeal carcinoma: a matched-pair comparison. Radiat. Oncol. 2, 22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bernier, J., Hall, E. J. & Giaccia, A. Radiation oncology: a century of achievements. Nature Rev. Cancer 4, 737–747 (2004). In this excellent review Bernier and colleagues highlight the progress of radiation therapy in the twentieth century with emphasis on the refinements of irradiation techniques and radiobiology. This Review and Bernier's review are complementary.

    Article  CAS  Google Scholar 

  9. Bel, A., Van Herk, M. & Lebesque, J. V. Target margins for random geometrical treatment uncertainties in conformal radiotherapy. Med. Phys. 23, 1537–1545 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Bel, A. et al. High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging. Int. J. Radiat. Oncol. Biol. Phys. 35, 321–332 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Van Herk, M. et al. Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. Int. J. Radiat. Oncol. Biol. Phys. 33, 1311–1320 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Yan, D., Wong, J. W., Gustafson, G. & Martinez, A. A new model for 'accept or reject' strategies in off-line and on-line megavoltage treatment evaluation. Int. J. Radiat. Oncol. Biol. Phys. 31, 943–952 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Yan, D. et al. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors. Int. J. Radiat. Oncol. Biol. Phys. 38, 197–206 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Alasti, H., Petric, M. P., Catton, C. N. & Warde, P. R. Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 49, 869–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. De Neve, W. et al. Interactive use of on-line portal imaging in pelvic radiation. Int. J. Radiat. Oncol. Biol. Phys. 25, 517–524 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Gildersleve, J. et al. A randomised trial of patient repositioning during radiotherapy using a megavoltage imaging system. Radiother. Oncol. 31, 161–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Schaake-Koning, C. et al. Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N. Engl. J. Med. 326, 524–530 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Herskovic, A. et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N. Engl. J. Med. 326, 1593–1598 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Krook, J. E. et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N. Engl. J. Med. 324, 709–715 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. De Ridder, M. et al. Lipid a radiosensitizes hypoxic EMT-6 tumor cells: role of the NF-kappaB signaling pathway. Int. J. Radiat. Oncol. Biol. Phys. 57, 779–786 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nature Rev. Cancer 4, 437–447 (2004).

    Article  CAS  Google Scholar 

  22. De Ridder, M. et al. Macrophages enhance the radiosensitizing activity of lipid A: a novel role for immune cells in tumor cell radioresponse. Int. J. Radiat. Oncol. Biol. Phys. 60, 598–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. De Ridder, M. et al. The radiosensitizing effect of immunoadjuvant OM-174 requires cooperation between immune and tumor cells through interferon-gamma and inducible nitric oxide synthase. Int. J. Radiat. Oncol. Biol. Phys. 66, 1473–1480 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Nyati, M. K., Morgan, M. A., Feng, F. Y. & Lawrence, T. S. Integration of EGFR inhibitors with radiochemotherapy. Nature Rev. Cancer 6, 876–885 (2006).

    Article  CAS  Google Scholar 

  26. Czito, B. G. et al. Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: Phase I trial results. Int. J. Radiat. Oncol. Biol. Phys. 68, 472–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: current status and issues of interest. Int. J. Radiat. Oncol. Biol. Phys. 51, 880–914 (2001). A critical review describing the state-of-the-art in IMRT in 2001.

  28. Peeters, S. T. et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J. Clin. Oncol. 24, 1990–1996 (2006).

    Article  PubMed  Google Scholar 

  29. Pollack, A. et al. Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int. J. Radiat. Oncol. Biol. Phys. 64, 518–526 (2006).

    Article  PubMed  Google Scholar 

  30. Kupelian, P. A. et al. Radical prostatectomy, external beam radiotherapy <72 Gy, external beam radiotherapy > or =72 Gy, permanent seed implantation, or combined seeds/external beam radiotherapy for stage T1-T2 prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 58, 25–33 (2004). This retrospective analysis of nearly 3,000 patients illustrates that dose escalation can improve the outcome of radiotherapy, which might therefore become an alternative to surgery.

    Article  PubMed  Google Scholar 

  31. Pow, E. H. et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 66, 981–991 (2006).

    Article  PubMed  Google Scholar 

  32. De Ridder, M. et al. Phase II study of preoperative helical tomotherapy for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. (in the press).

  33. Emami, B. et al. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21, 109–122 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Tome, W. A. & Fowler, J. F. Selective boosting of tumor subvolumes. Int. J. Radiat. Oncol. Biol. Phys. 48, 593–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Deasy, J. O. Partial tumor boosts: even more attractive than theory predicts? Int. J. Radiat. Oncol. Biol. Phys. 51, 279–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nature Rev. Cancer 2, 683–693 (2002).

    Article  CAS  Google Scholar 

  37. Payne, G. S. & Leach, M. O. Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br. J. Radiol. 79, S16–S26 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Thorwarth, D., Eschmann, S. M., Paulsen, F. & Alber, M. Hypoxia dose painting by numbers: a planning study. Int. J. Radiat. Oncol. Biol. Phys. 68, 291–300 (2007).

    Article  PubMed  Google Scholar 

  39. Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000). This critical review summarizes the advances in imaging that have potential applications in radiation oncology, and explores the concept of integrating physical and biological conformality in CRT.

    Article  CAS  PubMed  Google Scholar 

  40. Bentzen, S. M. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 6, 112–117 (2005).

    Article  PubMed  Google Scholar 

  41. Fletcher, G. H. Hypofractionation: lessons from complications. Radiother. Oncol. 20, 10–15 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Harrison, D., Crennan, E., Cruickshank, D., Hughes, P. & Ball, D. Hypofractionation reduces the therapeutic ratio in early glottic carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 15, 365–372 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, J. J. & Tannock, I. F. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nature Rev. Cancer 5, 516–525 (2005).

    Article  CAS  Google Scholar 

  44. Herfarth, K. K. et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J. Clin. Oncol 19, 164–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Nagata, Y. et al. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int. J. Radiat. Oncol. Biol. Phys. 63, 1427–1431 (2005).

    Article  PubMed  Google Scholar 

  46. Xia, T. et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 66, 117–125 (2006).

    Article  PubMed  Google Scholar 

  47. Haus, A. G., Pinsky, S. M. & Marks, J. E. A technique for imaging patient treatment area during a therapeutic radiation exposure. Radiology 97, 653–656 (1970).

    Article  CAS  PubMed  Google Scholar 

  48. Marks, J. E. & Haus, A. G. The effect of immobilisation on localisation error in the radiotherapy of head and neck cancer. Clin. Radiol. 27, 175–177 (1976).

    Article  CAS  PubMed  Google Scholar 

  49. Kinzie, J. J., Hanks, G. E., MacLean, C. J. & Kramer, S. Patterns of care study: Hodgkin's disease relapse rates and adequacy of portals. Cancer 52, 2223–2226 (1983). This can be considered as one of the first studies to correlate misalignment of treatment beams detected by daily imaging and recurrence.

    Article  CAS  PubMed  Google Scholar 

  50. Rabinowitz, I., Broomberg, J., Goitein, M., McCarthy, K. & Leong, J. Accuracy of radiation field alignment in clinical practice. Int. J. Radiat. Oncol. Biol. Phys. 11, 1857–1867 (1985).

    Article  CAS  PubMed  Google Scholar 

  51. Byhardt, R. W., Cox, J. D., Hornburg, A. & Liermann, G. Weekly localization films and detection of field placement errors. Int. J. Radiat. Oncol. Biol. Phys. 4, 881–887 (1978).

    Article  CAS  PubMed  Google Scholar 

  52. Holloway, A. F. A localising device for a rotating cobalt therapy unit. Br. J. Radiol. 31, 227 (1958).

    Article  CAS  PubMed  Google Scholar 

  53. Johns, H. E. & Cunningham, J. R. A precision cobalt 60 unit for fixed field and rotation therapy. Am. J. Roentgenol. Radium. Ther. Nucl. Med. 81, 4–12 (1959).

    CAS  PubMed  Google Scholar 

  54. Weissbluth, M., Karzmark, C. J., Steele, R. E. & Selby, A. H. The Stanford medical linear accelerator. II. Installation and physical measurements. Radiology 72, 242–253 (1959). References 52–54 illustrate some of the earlier attempts at improving image quality in the verification process of treatment by mounting X-ray devices on treatment machines. Many of more recent developments in IGRT are based on these concepts.

    Article  CAS  PubMed  Google Scholar 

  55. Verhey, L. J., Goitein, M., McNulty, P., Munzenrider, J. E. & Suit, H. D. Precise positioning of patients for radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 8, 289–294 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Leong, J. Use of digital fluoroscopy as an on-line verification device in radiation therapy. Phys. Med. Biol. 31, 985–992 (1986).

    Article  CAS  PubMed  Google Scholar 

  57. De Neve, W. et al. Routine clinical on-line portal imaging followed by immediate field adjustment using a tele-controlled patient couch. Radiother. Oncol. 24, 45–54 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Ezz, A. et al. Daily monitoring and correction of radiation field placement using a video-based portal imaging system: a pilot study. Int. J. Radiat. Oncol. Biol. Phys. 22, 159–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Meertens, H., Van Herk, M. & Weeda, J. A liquid ionisation detector for digital radiography of therapeutic megavoltage photon beams. Phys. Med. Biol. 30, 313–321 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. Van Herk, M. & Meertens, H. A matrix ionisation chamber imaging device for on-line patient setup verification during radiotherapy. Radiother. Oncol. 11, 369–378 (1988).

    Article  CAS  PubMed  Google Scholar 

  61. Herman, M. G. et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med. Phys. 28, 712–737 (2001). Electronic portal imaging devices initiated the concept of IGRT as “in-room imaging during the course of treatment with decisions made based on this information”. The AAPM report TG 58 offers a nice overview of the different technical solutions, clinical use and quality assurance.

    Article  CAS  PubMed  Google Scholar 

  62. Bel, A. et al. A computerized remote table control for fast on-line patient repositioning: implementation and clinical feasibility. Med. Phys. 27, 354–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Jaffray, D. A., Siewerdsen, J. H., Wong, J. W. & Martinez, A. A. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 1337–1349 (2002).

    Article  PubMed  Google Scholar 

  64. Verellen, D. et al. Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging. Radiother. Oncol. 67, 129–141 (2003).

    Article  PubMed  Google Scholar 

  65. Verellen, D. in Image-guided IMRT: Concepts and Clinical Applications (eds Bortfeld, T., Schmiidt-Ulrich, R. & De Neve, W.) (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  66. Verellen, D., Soete, G., Linthout, N., Tournel, K. & Storme, G. Optimal control of set-up margins and internal margins for intra- and extracranial radiotherapy using stereoscopic kilovoltage imaging. Cancer Radiother. 10, 235–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Soete, G., Verellen, D., Tournel, K. & Storme, G. Setup accuracy of stereoscopic X-ray positioning with automated correction for rotational errors in patients treated with conformal arc radiotherapy for prostate cancer. Radiother. Oncol. 80, 371–373 (2006).

    Article  PubMed  Google Scholar 

  68. Linthout, N. et al. Assessment of secondary patient motion induced by automated couch movement during on-line 6 dimensional repositioning in prostate cancer treatment. Radiother. Oncol. 83, 168–174 (2007).

    Article  PubMed  Google Scholar 

  69. Murphy, M. J. An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med. Phys. 24, 857–866 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Shirato, H. et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int. J. Radiat. Oncol. Biol. Phys. 48, 435–442 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Shirato, H. et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 48, 1187–1195 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Murphy, M. J. et al. The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 53, 475–482 (2002).

    Article  PubMed  Google Scholar 

  73. Verellen, D. et al. Importing measured field fluences into the treatment planning system to validate a breathing synchronized DMLC-IMRT irradiation technique. Radiother. Oncol. 78, 332–338 (2006).

    Article  PubMed  Google Scholar 

  74. Verellen, D. et al. Breathing synchronized irradiation using stereoscopic kV-imaging to limit influence of interplay between leaf motion and organ motion in 3D-CRT and IMRT: Dosimetric verification and first clinical experience. Int. J. Radiat. Oncol. Biol. Phys. 66, 108–119 (2006).

    Article  Google Scholar 

  75. Lu, W., Parikh, P. J., Hubenschmidt, J. P., Bradley, J. D. & Low, D. A. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med. Phys. 33, 2964–2974 (2006).

    Article  PubMed  Google Scholar 

  76. Ford, E. C., Mageras, G. S., Yorke, E. & Ling, C. C. Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med. Phys. 30, 88–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Hansen, V. N., Evans, P. M. & Swindell, W. The application of transit dosimetry to precision radiotherapy. Med. Phys. 23, 713–721 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Pasma, K. L., Heijmen, B. J., Kroonwijk, M. & Visser, A. G. Portal dose image (PDI) prediction for dosimetric treatment verification in radiotherapy. I. An algorithm for open beams. Med. Phys. 25, 830–840 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Mackie, T. R. et al. Image guidance for precise conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 56, 89–105 (2003).

    Article  PubMed  Google Scholar 

  80. Lof, J., Lind, B. K. & Brahme, A. An adaptive control algorithm for optimization of intensity modulated radiotherapy considering uncertainties in beam profiles, patient set-up and internal organ motion. Phys. Med. Biol. 43, 1605–1628 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Brahme, A. Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging. Acta Oncol. 42, 123–136 (2003).

    Article  PubMed  Google Scholar 

  82. Song, P. Y. et al. A comparison of four patient immobilization devices in the treatment of prostate cancer patients with three dimensional conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 34, 213–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Wulf, J., Hadinger, U., Oppitz, U., Olshausen, B. & Flentje, M. Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother. Oncol. 57, 225–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Hodge, W. et al. Feasibility report of image guided stereotactic body radiotherapy (IG-SBRT) with tomotherapy for early stage medically inoperable lung cancer using extreme hypofractionation. Acta Oncol. 45, 890–896 (2006).

    Article  PubMed  Google Scholar 

  85. Van Herk, M., Remeijer, P. & Lebesque, J. V. Inclusion of geometric uncertainties in treatment plan evaluation. Int. J. Radiat. Oncol. Biol. Phys. 52, 1407–1422 (2002).

    Article  PubMed  Google Scholar 

  86. Zhang, L. et al. Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 64, 1559–1569 (2006).

    Article  PubMed  Google Scholar 

  87. Polat, B., Wilbert, J., Baier, K., Flentje, M. & Guckenberger, M. Nonrigid patient setup errors in the head-and-neck region. Strahlenther. Onkol. 183, 506–511 (2007).

    Article  PubMed  Google Scholar 

  88. Kashani, R., Hub, M., Kessler, M. L. & Balter, J. M. Technical note: a physical phantom for assessment of accuracy of deformable alignment algorithms. Med. Phys. 34, 2785–2788 (2007).

    Article  PubMed  Google Scholar 

  89. Murphy, M. et al. The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75. Med. Phys. 34, 4041–4063. (2007).

    Article  PubMed  Google Scholar 

  90. Biggs, P. J., Goitein, M. & Russell, M. D. A diagnostic X ray field verification device for a 10 MV linear accelerator. Int. J. Radiat. Oncol. Biol. Phys. 11, 635–643 (1985).

    Article  CAS  PubMed  Google Scholar 

  91. Shiu, A. S., Hogstrom, K. R., Janjan, N. A., Fields, R. S. & Peters, L. J. Technique for verifying treatment fields using portal images with diagnostic quality. Int. J. Radiat. Oncol. Biol. Phys. 13, 1589–1594 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Munro, P. & Bouius, D. C. X-ray quantum limited portal imaging using amorphous silicon flat-panel arrays. Med. Phys. 25, 689–702 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Guckenberger, M. et al. Precision of image-guided radiotherapy (IGRT) in six degrees of freedom and limitations in clinical practice. Strahlenther. Onkol. 183, 307–313 (2007).

    Article  PubMed  Google Scholar 

  94. Murphy, M. J. et al. Image-guided radiosurgery for the spine and pancreas. Comput. Aided Surg. 5, 278–288. 2000.

    Article  CAS  PubMed  Google Scholar 

  95. Aoki, Y. et al. An integrated radiotherapy treatment system and its clinical application. Radiat. Med. 5, 131–141 (1987).

    CAS  PubMed  Google Scholar 

  96. Court, L., Rosen, I., Mohan, R. & Dong, L. Evaluation of mechanical precision and alignment uncertainties for an integrated CT/LINAC system. Med. Phys. 30, 1198–1210 (2003).

    Article  PubMed  Google Scholar 

  97. Kuriyama, K. et al. A new irradiation unit constructed of self-moving gantry-CT and linac. Int. J. Radiat. Oncol. Biol. Phys. 55, 428–435 (2003).

    Article  PubMed  Google Scholar 

  98. Uematsu, M. et al. Intrafractional tumor position stability during computed tomography (CT)-guided frameless stereotactic radiation therapy for lung or liver cancers with a fusion of CT and linear accelerator (FOCAL) unit. Int. J. Radiat. Oncol. Biol. Phys. 48, 443–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Holupka, E. J., Kaplan, I. D., Burdette, E. C. & Svensson, G. K. Ultrasound image fusion for external beam radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 35, 975–984 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Lattanzi, J. et al. A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 43, 719–725 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Langen, K. M. et al. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 57, 635–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Van den Heuvel, F. et al. Independent verification of ultrasound based image-guided radiation treatment, using electronic portal imaging and implanted gold markers. Med. Phys. 30, 2878–2887 (2003).

    Article  PubMed  Google Scholar 

  103. Seiler, P. G., Blattmann, H., Kirsch, S., Muench, R. K. & Schilling, C. A novel tracking technique for the continuous precise measurement of tumour positions in conformal radiotherapy. Phys. Med. Biol. 45, N103-N110 (2000).

    Article  Google Scholar 

  104. Litzenberg, D. W. et al. Positional stability of electromagnetic transponders used for prostate localization and continuous, real-time tracking. Int. J. Radiat. Oncol. Biol. Phys. 68, 1199–1206 (2007).

    Article  PubMed  Google Scholar 

  105. Takai, Y., Mitsuya, M. & Nemoto, K. Development of a new linear accelerator mounted with dual X-ray fluorosocpy using amorphous silicon flat panel X-ray sensors to detect a gold seed in a tumor at real treatment position. Int. J. Radiat. Oncol. Biol. Phys. 51, 381 (2001).

    Article  Google Scholar 

  106. Pouliot, J. et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 552–560 (2005).

    Article  PubMed  Google Scholar 

  107. Mackie, T. R. et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med. Phys. 20, 1709–1719 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Fenwick, J. D. et al. Quality assurance of a helical tomotherapy machine. Phys. Med. Biol. 49, 2933–2953 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Carol, M. Peacock: a system for planning and rotational delivery of intensity-modulated fields. Int. J. Imag. Syst. Technol. 6, 56–61 (1995).

    Article  Google Scholar 

  110. Verellen, D., Linthout, N., Van den, B. D., Bel, A. & Storme, G. Initial experience with intensity-modulated conformal radiation therapy for treatment of the head and neck region. Int. J. Radiat. Oncol. Biol. Phys. 39, 99–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Verellen, D., Linthout, N. & Storme, G. Target localization and treatment verification for intensity modulated conformal radiation therapy of the head and neck region. Strahlenther. Onkol. 174, 19–27 (1998).

    Article  PubMed  Google Scholar 

  112. Kamino, Y. et al. Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int. J. Radiat. Oncol. Biol. Phys. 66, 271–278 (2006).

    Article  PubMed  Google Scholar 

  113. Raaijmakers, A. J., Raaymakers, B. W., van der, M. S. & Lagendijk, J. J. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field. Phys. Med. Biol. 52, 929–939 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Janek, S., Svensson, R., Jonsson, C. & Brahme, A. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy. Phys. Med. Biol. 51, 5769–5783 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Langen, K. M. & Jones, D. T. Organ motion and its management. Int. J. Radiat. Oncol. Biol. Phys. 50, 265–278 (2001). The authors compiled and reviewed existing data on inter- and intra-fraction motion of different organs and tumours, and discussed some of the techniques that can be used to manage this motion in radiotherapy.

    Article  CAS  PubMed  Google Scholar 

  116. Lax, I., Blomgren, H., Naslund, I. & Svanstrom, R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 33, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Wong, J. W. et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int. J. Radiat. Oncol. Biol. Phys. 44, 911–919 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Mah, D. et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int. J. Radiat. Oncol. Biol. Phys. 48, 1175–1185 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Caldwell, C. B., Mah, K., Skinner, M. & Danjoux, C. E. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int. J. Radiat. Oncol. Biol. Phys. 55, 1381–1393 (2003).

    Article  PubMed  Google Scholar 

  120. Ohara, K. et al. Irradiation synchronized with respiration gate. Int. J. Radiat. Oncol. Biol. Phys. 17, 853–857 (1989).

    Article  CAS  PubMed  Google Scholar 

  121. Keall, P. J., Kini, V. R., Vedam, S. S. & Mohan, R. Motion adaptive x-ray therapy: a feasibility study. Phys. Med. Biol. 46, 1–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Brock, K. K. et al. Inclusion of organ deformation in dose calculations. Med. Phys. 30, 290–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Bortfeld, T., Jiang, S. B. & Rietzel, E. Effects of motion on the total dose distribution. Semin. Radiat. Oncol. 14, 41–51 (2004).

    Article  PubMed  Google Scholar 

  124. Guckenberger, M. et al. Four-dimensional treatment planning for stereotactic body radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 69, 276–285 (2007).

    Article  PubMed  Google Scholar 

  125. Bosmans, G. et al. An “in silico” clinical trial comparing free breathing, slow and respiration correlated computed tomography in lung cancer patients. Radiother. Oncol. 81, 73–80 (2006).

    Article  PubMed  Google Scholar 

  126. Faria, S. et al. Radiotherapy volume delineation with PET in lung cancer may be less useful than foreseen. J. Thorac. Oncol. 2, 347–348 (2007).

    Article  Google Scholar 

  127. Lagerwaard, F. J. et al. Multiple 'slow' CT scans for incorporating lung tumor mobility in radiotherapy planning. Int. J. Radiat. Oncol. Biol. Phys. 51, 932–937 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Jiang, S. B. et al. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys. Med. Biol. 48, 1773–1784 (2003).

    Article  PubMed  Google Scholar 

  129. de Mey, J. et al. Percutaneous placement of marking coils before stereotactic radiation therapy of malignant lung lesions. J. Vasc. Interv. Radiol. 16, 51–56 (2005).

    Article  PubMed  Google Scholar 

  130. Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M. J. & Adler, J. R. Robotic motion compensation for respiratory movement during radiosurgery. Comput. Aided Surg. 5, 263–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Mageras, G. S. et al. Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J. Appl. Clin. Med. Phys. 2, 191–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hanley, J. et al. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int. J. Radiat. Oncol. Biol. Phys. 45, 603–611 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Murphy, M. J. Tracking moving organs in real time. Semin. Radiat. Oncol. 14, 91–100 (2004).

    Article  PubMed  Google Scholar 

  134. Keall, P. J. et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys. 33, 3874–3900 (2006). This report describes observed magnitudes of respiratory motion, discusses specific problems related to radiotherapy, explains techniques to manage respiratory motion and gives recommendations in the applications of these techniques for patient care.

    Article  PubMed  Google Scholar 

  135. Suit, H. D. in Proc. Conf. Time Dose Relationships Radiat. Biol. Applied Radiother. (Brookhaven National Laboratory, New York, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Verellen.

Related links

Related links

DATABASES

National Cancer Institute

head-and-neck cancer

hepatic malignancies

Hodgkin disease

pancreatic cancer

prostate cancer

rectal cancer

Glossary

Gross tumour volume

The gross palpable or visible/demonstrable extent and location of malignant growth.

Clinical target volume

A tissue volume that contains the gross tumour volume and/or subclinical malignant disease, which is to be eliminated. This volume has to be treated adequately in order to achieve the aim of radiotherapy: cure or palliation.

Planning target volume

An additional margin added to the CTV that is a statistical construct to ensure that the desired dose can be anatomically realized in the CTV during treatment.

Image-guided radiotherapy

Frequent imaging in the treatment room during a course of radiotherapy to guide the treatment process.

Conformal radiotherapy

Describes the aim in radiotherapy of conforming or shaping the high-dose volume to the planning treatment volume. Alternatively, conformal avoidance refers to sparing of organs at risk.

Normal-tissue complication probability

With the introduction of 3D treatment planning systems, it has become possible to calculate and evaluate the dose distribution not only in tumours but also in nearby normal tissues. From these 3D dose distributions it is possible to model the outcome in biological terms of tumour control probability and normal-tissue complication probability. However, proper clinical validation of these models is still lacking.

Intensity-modulated radiotherapy

Radiotherapy technique in which the intensity of irradiation varies within a radiation field. This can be obtained by using differential dose absorbers or by varying the time of radiation at different points.

Dose painting by numbers

Experimental intensity-modulated radiotherapy strategy in which the intensity of radiation intentionally varies within a tumour, on the basis of estimated levels of radioresistance that were assessed by biological and physical imaging modalities.

Permanent seed implantation

Radiotherapy in which the radiation source is implanted into the tumour (also known as brachytherapy). Prostate brachytherapy can deliver high and concentrated doses of radiation to the prostate gland.

Tomotherapy

A specially designed collimator generates an intensity-modulated profile and at the same time the gantry rotates about the long axis of the patient and as such irradiates a slice of the patient. One approach is the slice-by-slice arc rotation approach, in which the patient is translated longitudinally between consecutive gantry rotations to treat sequential transaxial slices. In the other approach, helical tomotherapy, the patient is being translated longitudinally, slowly and continuously, during the gantry rotation.

Computed tomography

In radiotherapy, volumetric IGRT solutions can be based on conventional kV X-ray sources or high energy MV photon beams that are used for treatment.

Treatment simulator

The treatment simulator is a machine that emulates the geometry of the treatment unit, but uses diagnostic quality X-rays to carry out localization and verification of the patient in treatment position.

Linear accelerator

A device that uses high frequency electromagnetic waves to accelerate charged particles such as electrons to high energies through a linear tube. The high-energy electron beam itself can be used for treating superficial tumours or it can be made to strike a target to produce high-energy (MV) X-rays for treating deep-seated tumours.

Image registration

The process of registering different image sets of the same modality (for example, CT–CT) or different modalities (for example, CT–MRI or CT–PET). This registration can be affine (that is, one set is translated, rotated or rescaled to match with the primary set assuming the patient's anatomy was not deformed) or deformable (that is, the registration algorithm deforms the secondary set to cope with internal and external deformations of anatomy).

Electronic portal imaging device

A device that enables automated acquisition of images acquired with a treatment beam.

Offline patient set-up

The offline approach monitors the position of the patient during a limited number of fractions and adapts the safety margins accordingly. This approach does not allow for decreasing the treatment margins sufficiently for aggressive conformal radiotherapy.

Online patient set-up

The online approach offers the possibility of reducing most geometric errors (both systematic and random), but is considered to be time consuming and requires automated control of the treatment couch to make it efficient in clinical practice.

Peripheral solutions to IGRT

In-room imaging systems that are not mounted physically on the treatment-delivery system.

Isocentre

The point of intersection of the central axis of the radiation beam and the horizontal axis of rotation of the gantry. Traditionally the centre of the planning treatment volume coincides with the isocentre.

On-Board IGRT system

In-room imaging systems that are physically attached to the treatment-delivery system.

Cone beam volumetric CT

A CT scanning method in which the fan-beam and linear detector array is replaced with an open-beam and large-area flat-panel detector to generate volumetric images through a single rotation of the system.

Dose volume histogram

An alternative method for displaying the results of dose calculation. The histogram shows the percentage of the volume of any structure that is irradiated above a particular dose level. More correctly known as cumulative DVH.

Multi-leaf collimator

Computers have enabled the replacement of field-shaping beam blocks, which create irregularly shaped irradiation fields to spare vulnerable tissues, with an MLC. MLCs consist of 40–120 movable leaves, with a width varying between 0.2 and 1.0 cm, that are arranged in opposed pairs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verellen, D., Ridder, M., Linthout, N. et al. Innovations in image-guided radiotherapy. Nat Rev Cancer 7, 949–960 (2007). https://doi.org/10.1038/nrc2288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2288

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing