Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bleomycins: towards better therapeutics

Key Points

  • Bleomycins are a family of glycopeptide antibiotics with antitumour activity. They are used clinically in combination chemotherapy against lymphomas, squamous-cell carcinomas and germ-cell tumours.

  • The side effects of the bleomycins are dose-dependent and involve lung inflammation that often proceeds to lung fibrosis.

  • Bleomycins bind transition metals (Fe(II) or Cu(I)) and oxygen and, in the presence of a one-electron reductant, can catalyse formation of single-stranded (ss) and double-stranded (ds) DNA lesions. The damage is similar to that generated by ionizing radiation.

  • In vitro studies indicate that a single molecule of bleomycin is sufficient to generate lesions on both strands of DNA, the proposed source of cytotoxicity. Hot spots for dsDNA cleavage have been identified and have led to empirical rules about the sequences leading to dsDNA lesions.

  • Studies on a large number of bleomycin analogues, made possible by total synthesis of bleomycin, have indicated that the whole molecule is much greater than the sum of its parts. The linker between the metal and the bithiazole DNA-binding domain and the flexibility of the bithiazole moiety itself are essential for efficient dsDNA cleavage.

  • The cellular responses to bleomycin treatment are complex and are cell-line- and genotype-dependent. Extended cell-cycle arrest, apoptosis and mitotic cell death are the most common outcomes of bleomycin treatment.

  • Bleomycins are hydrophilic molecules that are unable to cross cell membranes by free diffusion. Studies indicate that the positively charged tail of bleomycin might be key to cellular uptake.

  • Biosynthetic genes for bleomycin have been identified and some of the proteins in the pathway have been characterized. These studies, in concert with chemical synthesis, open the door to making libraries of bleomycin analogues.

Abstract

Bleomycins are a family of glycopeptide antibiotics that have potent antitumour activity against a range of lymphomas, head and neck cancers and germ-cell tumours. The therapeutic efficacy of the bleomycins is limited by development of lung fibrosis. The cytotoxic and mutagenic effects of the bleomycins are thought to be related to their ability to mediate both single-stranded and double-stranded DNA damage, which requires the presence of specific cofactors (a transition metal, oxygen and a one-electron reductant). Progress in understanding the mechanisms involved in the therapeutic efficacy of the bleomycins and the unwanted toxicity and elucidation of the biosynthetic pathway of the bleomycins sets the stage for developing a more potent, less toxic therapeutic agent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of metallobleomycins and their domain organization.
Figure 2: Formation of 'activated' bleomycin and cleavage of DNA.
Figure 3: Products of bleomycin-induced double-stranded DNA cleavage and a proposed model for this process.
Figure 4: Putative base-excision repair pathway for bleomycin-induced single-stranded DNA breaks.
Figure 5: Intracellular response network to bleomycin damage.
Figure 6: Proposed mechanisms for generation of 'activated bleomycin' in vivo.

Similar content being viewed by others

References

  1. Umezawa, H., Maeda, K., Takeuchi, T. & Okami, Y. New antibiotics, bleomycin A and B. J. Antibiot. (Tokyo) 19, 200–209 (1966).

    CAS  Google Scholar 

  2. Levi, J. A. et al. The importance of bleomycin in combination chemotherapy for good-prognosis germ cell carcinoma. Australasian Germ Cell Trial Group. J. Clin. Oncol. 11, 1300–1305 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Einhorn, L. H. Curing metastatic testicular cancer. Proc. Natl Acad. Sci. USA 99, 4592–4595 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sikic, B. I., Rozencweig, M. & Carter, S. K. Bleomycin Chemotherapy (Academic, Orlando, Florida, 1985).

    Google Scholar 

  5. Bayer, R. A., Gaynor, E. R. & Fisher, R. I. Bleomycin in non-Hodgkin's lymphoma. Semin. Oncol. 19, 46–52 (1992).

    CAS  PubMed  Google Scholar 

  6. Boggs, S. S., Sartiano, G. P. & DeMezza, A. Minimal bone marrow damage in mice given bleomycin. Cancer Res. 34, 1938–1942 (1974).

    CAS  PubMed  Google Scholar 

  7. Lehane, D. E., Hurd, E. & Lane, M. The effects of bleomycin on immunocompetence in man. Cancer Res. 35, 2724–2728 (1975).

    CAS  PubMed  Google Scholar 

  8. Sleijfer, S. Bleomycin-induced pneumonitis. Chest 120, 617–624 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Burger, R. M., Peisach, J. & Horwitz, S. B. Activated bleomycin: a transient complex of drug, iron, and oxygen that degrades DNA. J. Biol. Chem. 256, 11636–11644 (1981).

    CAS  PubMed  Google Scholar 

  10. Ekimoto, H., Takahashi, K., Matsuda, A., Takita, T. & Umezawa, H. Lipid peroxidation by bleomycin–iron complexes in vitro. J. Antibiot. (Tokyo) 38, 1077–1082 (1985).

    Article  CAS  Google Scholar 

  11. Rana, T. M. & Meares, C. F. Transfer of oxygen from an artificial protease to peptide carbon during proteolysis. Proc. Natl Acad. Sci. USA 88, 10578–10582 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hecht, S. M. RNA degradation by bleomycin, a naturally occurring bioconjugate. Bioconjugate Chem. 5, 513–526 (1994).

    Article  CAS  Google Scholar 

  13. Stubbe, J. & Kozarich, J. W. Mechanisms of bleomycin-induced DNA degradation. Chem. Rev. 87, 1107–1136 (1987).

    Article  CAS  Google Scholar 

  14. Stubbe, J., Kozarich, J. W., Wu, W. & Vanderwall, D. E. Bleomycins: a structural model for specificity, binding, and double strand cleavage. Acc. Chem. Res. 29, 322–330 (1996).

    Article  CAS  Google Scholar 

  15. Boger, D. L. & Cai, H. Bleomycin: Synthetic and mechanistic studies. Angew. Chem. Int. Ed. 38, 449–476 (1999). A comprehensive review on synthetic bleomycin analogues and their ability to cleave DNA. The results indicate that bleomycin is a finely tuned machine, the parts of which act synergistically to efficiently effect dsDNA cleavage.

    Google Scholar 

  16. Hecht, S. M. Bleomycin: new perspectives on the mechanism of action. J. Nat. Prod. 63, 158–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. D'Andrea, A. D. & Haseltine, W. A. Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc. Natl Acad. Sci. USA 75, 3608–3612 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, W., Vanderwall, D. E., Stubbe, J., Kozarich, J. W. & Turner, C. J. Interaction of Co·bleomycin A2 (Green) with d(CCAGGCCTGG)2: evidence for intercalation using 2D NMR. J. Am. Chem. Soc. 116, 10843–10844 (1994).

    Article  CAS  Google Scholar 

  19. Povirk, L. F., Hogan, M. & Dattagupta, N. Binding of bleomycin to DNA: Intercalation of the bithiazole Rings. Biochemistry 18, 96–101 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Abraham, A. T., Zhou, X. & Hecht, S. M. Metallobleomycin-mediated cleavage of DNA not involving a threading-intercalation mechanism. J. Am. Chem. Soc. 123, 5167–5175 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, W. et al. NMR studies of Co·deglycoBleomycin A2 green and its complex with d(CCAGGCCTGG)2 . J. Am. Chem. Soc. 120, 2239–2250 (1998).

    Article  CAS  Google Scholar 

  22. Tounekti, O., Kenani, A., Foray, N., Orlowski, S. & Mir, L. M. The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. Br. J. Cancer. 84, 1272–1279 (2001). By controlling bleomycin's uptake using electroporation, the authors demonstrated that the extent of dsDNA cleavage is dependent on the intracellular bleomycin concentration, the extent of which dictates cellular responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hecht, S. M. Bleomycin combinatorial libraries: a strategy for identifying mechanism of action and improved analogues. Eur. J. Cancer 38, S13–S14 (2002).

    Google Scholar 

  24. Rishel, M. J. & Hecht, S. M. Analogues of bleomycin: Synthesis of conformationally rigid methylvalerates. Org. Lett. 3, 2867–2869 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Leitheiser, C. J. et al. Solid-phase synthesis of bleomycin group antibiotics: Construction of a 108-member deglycobleomycin library. J. Am. Chem. Soc. 125, 8218–8227 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Povirk, L. F., Wübker, W., Köhnlein, W. & Hutchinson, F. DNA Double-strand breaks and alkali-labile bonds produced by bleomycin. Nucleic Acids Res. 4, 3573–3580 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Absalon, M. J., Wu, W., Kozarich, J. W. & Stubbe, J. Sequence-specific double-strand cleavage of DNA by Fe bleomycin. 2. Mechanism and dynamics. Biochemistry 34, 2076–2086 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Vanderwall, D. E. et al. A model of the structure of HOO-Co·bleomycin bound to d(CCAGTACTGG): recognition at the d(GpT) site and implications for double-stranded DNA cleavage. Chem. Biol. 4, 373–387 (1997). The structure of bleomycin–Co(III)–OOH bound sequence specifically to an oligonucleotide duplex containing a hot spot for dsDNA cleavage. This structure leads to the current model for how a single molecule of bleomycin can effect dsDNA cleavage.

    Article  CAS  PubMed  Google Scholar 

  29. Kuo, M. T. & Hsu, T. C. Bleomycin causes release of nucleosomes from chromatin and chromosomes. Nature 271, 83–84 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Kuo, M. T. & Hsu, T. C. Biochemical and cytological studies of bleomycin actions on chromatin and chromosomes. Chromosoma (Berl.) 68, 229–240 (1978).

    Article  CAS  Google Scholar 

  31. Smith, B. L., Bauer, G. B. & Povirk, L. F. DNA damage induced by bleomycin, neocarzinostatin, and melphalan in a precisely positioned nucleosome. J. Biol. Chem. 269, 30587–30594 (1994). Bleomycin's ability to cleave nucleosomes was examined. The results indicate that bleomycin binds DNA by intercalation.

    CAS  PubMed  Google Scholar 

  32. Kunimoto, T., Hori, M. & Umezawa, H. Modes of action of phleomycin, bleomycin and formycin on HeLa S3 cells in synchronized culture. J. Antibiot. (Tokyo) 20, 277–281 (1967).

    CAS  Google Scholar 

  33. Tobey, R. A. A simple, rapid technique for determination of the effects of chemotherapeutic agents on mammalian cell-cycle traverse. Cancer Res. 32, 309–316 (1972).

    CAS  PubMed  Google Scholar 

  34. Ohama, K. & Kadotani, T. Cytologic effects of bleomycin on cultured human leukocytes. Jap. J. Human Genet. 14, 293–297 (1970).

    Google Scholar 

  35. Vig, B. K. & Lewis, R. Genetic toxicology of bleomycin. Mutat. Res. 55, 121–145 (1978).

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki, H., Nagai, K., Yamaki, H., Tanaka, N. & Umezawa, H. On the mechanism of action of bleomycin: scission of DNA strands in vitro and in vivo. J. Antibiot. (Tokyo) 22, 446–448 (1969).

    Article  CAS  Google Scholar 

  37. Suzuki, H., Nagai, K., Akutsu, E., Yamaki, H. & Tanaka, N. On the mechanism of action of bleomycin. Strand scission of DNA caused by bleomycin and its binding to DNA in vitro. J. Antibiot. (Tokyo) 23, 473–480 (1970).

    Article  CAS  Google Scholar 

  38. Iqbal, Z. M., Kohn, K. W., Ewig, R. A. & Fornace, A. J. Jr. Single-strand scission and repair of DNA in mammalian cells by bleomycin. Cancer Res. 36, 3834–3838 (1976).

    CAS  PubMed  Google Scholar 

  39. Moore, C. W. & Little, J. B. Rapid and slow DNA rejoining in nondividing human diploid fibroblasts treated with bleomycin and ionizing radiation. Cancer Res. 45, 1982–1986 (1985).

    CAS  PubMed  Google Scholar 

  40. Coogan, T. P., Rosenblum, I. Y. & Barsotti, D. A. Bleomycin-induced DNA-strand damage in isolated male germ cells. Mutat. Res. 162, 215–218 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Kuo, M. T. Preferential damage of active chromatin by bleomycin. Cancer Res. 41, 2439–2443 (1981).

    CAS  PubMed  Google Scholar 

  42. Olive, P. L. & Banath, J. P. Detection of DNA double-strand breaks through the cell cycle after exposure to X-rays, bleomycin, etoposide and 125IdUrd. Int. J. Radiat. Biol. 64, 349–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Xu, Y. J., Kim, E. Y. & Demple, B. Excision of C-4′-oxidized deoxyribose lesions from double-stranded DNA by human apurinic/apyrimidinic endonuclease (Ape1 protein) and DNA polymerase β. J. Biol. Chem. 273, 28837–28844 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Suh, D., Wilson, D. M. 3rd & Povirk, L. F. 3′-phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends. Nucleic Acids Res. 25, 2495–2500 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chaudhry, M. A., Dedon, P. C., Wilson, D. M., 3rd, Demple, B. & Weinfeld, M. Removal by human apurinic/apyrimidinic endonuclease 1 (Ape 1) and Escherichia coli exonuclease III of 3′-phosphoglycolates from DNA treated with neocarzinostatin, calicheamicin, and γ-radiation. Biochem. Pharmacol. 57, 531–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Parsons, J. L., Dianova, II & Dianov, G. L. APE1 is the major 3′-phosphoglycolate activity in human cell extracts. Nucleic Acids Res 32, 3531–3536 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Inamdar, K. V. et al. Conversion of phosphoglycolate to phosphate termini on 3′ overhangs of DNA double strand breaks by the human tyrosyl-DNA phosphodiesterase hTdp1. J. Biol. Chem. 277, 27162–27168 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H. & Kraut, J. Crystal structures of human DNA polymerase βcomplexed with DNA: implications for catalytic mechanism, processivity, and fidelity. Biochemistry 35, 12742–12761 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Robertson, K. A. et al. Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation. Cancer Res. 61, 2220–2225 (2001). Upregulation of APE1 is correlated with resistance of bleomycin in germ-cell tumours, indicating a role of APE1 in processing bleomycin-induced DNA lesions.

    CAS  PubMed  Google Scholar 

  50. Ramana, C. V., Boldogh, I., Izumi, T. & Mitra, S. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc. Natl Acad. Sci. USA 95, 5061–5066 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He, Y. H., et al. Expression of yeast apurinic/apyrimidinic endonuclease (APN1) protects lung epithelial cells from bleomycin toxicity. Am. J. Respir. Cell. Mol. Biol. 25, 692–698 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Sun, D. A., Deng, J. Z., Starck, S. R. & Hecht, S. M. Mispyric acid, a new monocyclic triterpenoid with a novel skeleton from Mischocarpus pyriformis that inhibits DNA polymerase β. J. Am. Chem. Soc. 121, 6120–6124 (1999).

    Article  CAS  Google Scholar 

  53. Li, S. S., Gao, Z., Feng, X., Jones, S. H. & Hecht, S. M. Plant sterols as selective DNA polymerase β lyase inhibitors and potentiators of bleomycin cytotoxicity. Bioorg. Med. Chem. 12, 4253–4258 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Valerie, K. & Povirk, L. F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22, 5792–5812 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Povirk, L. F., Bennett, R. A., Wang, P., Swerdlow, P. S. & Austin, M. J. Single base-pair deletions induced by bleomycin at potential double-strand cleavage sites in the aprt gene of stationary phase Chinese hamster ovary D422 cells. J. Mol. Biol. 243, 216–226 (1994). Mutagenic effects of bleomycin were examined. The results revealed predominant single-base deletions thought to result from the NHEJ of the blunt-ended dsDNA cleavage sites generated by bleomycin.

    Article  CAS  PubMed  Google Scholar 

  57. Koberle, B. & Speit, G. Molecular characterization of mutations at the hprt locus in V79 Chinese hamster cells induced by bleomycin in the presence of inhibitors of DNA repair. Mutat. Res. 249, 161–167 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Koberle, B., Haupter, S., Just, W. & Speit, G. Mutation screening of bleomycin-induced V79 Chinese hamster hprt mutants using multiplex polymerase chain reaction. Mutagenesis 6, 527–531 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Cairns, M. J. & Murray, V. Influence of chromatin structure on bleomycin-DNA interactions at base pair resolution in the human β-globin gene cluster. Biochemistry 35, 8753–8760 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Allio, T. & Preston, R. J. Increased sensitivity to chromatid aberration induction by bleomycin and neocarzinostatin results from alterations in a DNA damage response pathway. Mutat. Res. 453, 5–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Elson, A. et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl Acad. Sci. USA 93, 13084–13089 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nelson, W. G. & Kastan, M. B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14, 1815–1823 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Muller, M. et al. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest. 99, 403–413 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patel, V., Ensley, J. F., Gutkind, J. S. & Yeudall, W. A. Induction of apoptosis in head-and-neck squamous carcinoma cells by gamma-irradiation and bleomycin is p53-independent. Int. J. Cancer 88, 737–743 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Gimonet, D., Landais, E., Bobichon, H., Coninx, P. & Liautaud-Roger, F. Induction of apoptosis by bleomycin in p53-null HL-60 leukemia cells. Int. J. Oncol. 24, 313–319 (2004).

    CAS  PubMed  Google Scholar 

  66. Mekid, H. et al. In vivo evolution of tumor cells after the generation of double-strand DNA breaks. Br. J. Cancer. 88, 1763–1771 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gothelf, A., Mir, L. M. & Gehl, J. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29, 371–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Kanao, M., Tomita, S., Ishihara, S., Murakami, A. & Okada, H. Chelation of bleomycin with copper in vivo. Chemotherapy (Tokyo) 21, 1305–1310 (1973).

    CAS  Google Scholar 

  69. Rao, E. A., Saryan, L. A., Antholine, W. E. & Petering, D. H. Cytotoxic and antitumor properties of bleomycin and its metal complexes. J. Med. Chem. 23, 1310–1318 (1980).

    Article  CAS  PubMed  Google Scholar 

  70. Byrnes, R. W., Templin, J., Sem, D., Lyman, S. & Petering, D. H. Intracellular DNA strand scission and growth inhibition of Ehrlich ascites tumor cells by bleomycins. Cancer Res. 50, 5275–5286 (1990).

    CAS  PubMed  Google Scholar 

  71. Roy, S. N. & Horwitz, S. B. Characterization of the association of radiolabeled bleomycin A2 with HeLa cells. Cancer Res. 44, 1541–1546 (1984).

    CAS  PubMed  Google Scholar 

  72. Lyman, S. et al. Properties of the initial reaction of bleomycin and several of its metal complexes with Ehrlich cells. Cancer Res. 46, 4472–4478 (1986).

    CAS  PubMed  Google Scholar 

  73. Kenani, A., Bailly, C., Houssin, R. & Henichart, J. P. Comparative subcellular distribution of the copper complexes of bleomycin-A2 and deglycobleomycin-A2. Anticancer Drugs 5, 199–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Pron, G., Belehradek, J. Jr. & Mir, L. M. Identification of a plasma membrane protein that specifically binds bleomycin. Biochem. Biophys. Res. Commun. 194, 333–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Pron, G. et al. Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem. Pharmacol. 57, 45–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Aouida, M. et al. Isolation and characterization of Saccharomyces cerevisiae mutants with enhanced resistance to the anticancer drug bleomycin. Curr. Genet. 45, 265–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Aouida, M., Page, N., Leduc, A., Peter, M. & Ramotar, D. A genome-wide screen in Saccharomyces cerevisiae reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin. Cancer Res. 64, 1102–1109 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Aouida, M., Leduc, A., Wang, H. & Ramotar, D. Characterization of a transport and detoxification pathway for the antitumor drug bleomycin in Saccharomyces cerevisiae. Biochem. J 384, 47–58 (2004). Yeast mutants resistant to bleomycin were characterized and results indicated that proteins involved in polyamine uptake might be responsible for uptake of bleomycin into the cell. Using fluorescently labelled bleomycin, most of the bleomycin molecules were found to be sequestered in vacuoles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Crooke, S. T. et al. Effects of variations in renal function on the clinical pharmacology of bleomycin administered as an IV bolus. Cancer Treat. Rep. 61, 1631–1636 (1977).

    CAS  PubMed  Google Scholar 

  80. Seidel, S. D., Kan, H. L., Stott, W. T., Schisler, M. R. & Gollapudi, B. B. Identification of transcriptome profiles for the DNA-damaging agents bleomycin and hydrogen peroxide in L5178Y mouse lymphoma cells. Environ. Mol. Mutagen. 42, 19–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Kaminski, N. et al. Use of oligonucleotide microarrays to analyze gene expression patterns in pulmonary fibrosis reveals distinct patterns of gene expression in mice and humans. Chest 121, 31S–32S (2002).

    Article  PubMed  Google Scholar 

  82. Zuo, F. et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Natl Acad. Sci. USA 99, 6292–6297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Katsuma, S. et al. Molecular monitoring of bleomycin-induced pulmonary fibrosis by cDNA microarray-based gene expression profiling. Biochem. Biophys. Res. Commun. 288, 747–751 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Kaminski, N. et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc. Natl Acad. Sci. USA 97, 1778–1783 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lazo, J. S. & Humphreys, C. J. Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc. Natl Acad. Sci. USA 80, 3064–3068 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Umezawa, H., Hori, S., Sawa, T., Yoshioka, T. & Takeuchi, T. A bleomycin-inactivating enzyme in mouse liver. J. Antibiot. (Tokyo) 27, 419–424 (1974).

    Article  CAS  Google Scholar 

  87. Sebti, S. M., Mignano, J. E., Jani, J. P., Srimatkandada, S. & Lazo, J. S. Bleomycin hydrolase: molecular cloning, sequencing, and biochemical studies reveal membership in the cysteine proteinase family. Biochemistry 28, 6544–6548 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, C. H., Mirabelli, C. K., Jan, Y. & Crooke, S. T. Single-strand and double-strand deoxyribonucleic acid breaks produced by several bleomycin analogues. Biochemistry 20, 233–238 (1981).

    Article  CAS  PubMed  Google Scholar 

  89. Zou, Y., Fahmi, N. E., Vialas, C., Miller, G. M. & Hecht, S. M. Total synthesis of deamido bleomycin A2, the major catabolite of the antitumor agent bleomycin. J. Am. Chem. Soc. 124, 9476–9488 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Sebti, S. M., Jani, J. P., Mistry, J. S., Gorelik, E. & Lazo, J. S. Metabolic inactivation: a mechanism of human tumor resistance to bleomycin. Cancer Res. 51, 227–232 (1991).

    CAS  PubMed  Google Scholar 

  91. Wang, H. & Ramotar, D. Cellular resistance to bleomycin in Saccharomyces cerevisiae is not affected by changes in bleomycin hydrolase levels. Biochem. Cell. Biol. 80, 789–796 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. White, D. A. & Stover, D. E. Severe bleomycin-induced pneumonitis. Clinical features and response to corticosteroids. Chest 86, 723–728 (1984).

    Article  CAS  PubMed  Google Scholar 

  93. Du, L., Sanchez, C., Chen, M., Edwards, D. J. & Shen, B. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chem. Biol 7, 623–642 (2000). The genes involved in the biosynthesis of bleomycin were identified. Bleomycin was found to be synthesized by proteins found within nine non-ribosomal-polypeptide-synthetase modules and one polyketide-synthase module.

    Article  CAS  PubMed  Google Scholar 

  94. Du, L., Chen, M., Sanchez, C. & Shen, B. An oxidation domain in the BlmIII non-ribosomal peptide synthetase probably catalyzing thiazole formation in the biosynthesis of the anti-tumor drug bleomycin in Streptomyces verticillus ATCC15003. FEMS Microbiol. Lett. 189, 171–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Du, L., Chen, M., Zhang, Y. & Shen, B. BlmIII and BlmIV nonribosomal peptide synthetase-catalyzed biosynthesis of the bleomycin bithiazole moiety involving both in cis and in trans aminoacylation. Biochemistry 42, 9731–9740 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Schneider, T. L., Shen, B. & Walsh, C. T. Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42, 9722–9730 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Hu, Y. & Walker, S. Remarkable structural similarities between diverse glycosyltransferases. Chem. Biol. 9, 1287–1296 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Losey, H. C. et al. Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem. Biol. 9, 1305–1314 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Walker, M. A. et al. Monoclonal antibody mediated intracellular targeting of tallysomycin S(10b). Bioorg. Med. Chem. Lett. 14, 4323–4327 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Magliozzo, R. S., Peisach, J. & Ciriolo, M. R. Transfer RNA is cleaved by activated bleomycin. Mol. Pharmacol. 35, 428–432 (1989).

    CAS  PubMed  Google Scholar 

  101. Carter, B. J. et al. Site-specific cleavage of RNA by Fe(II)·bleomycin. Proc. Natl Acad. Sci. USA 87, 9373–9377 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Holmes, C. E., Abraham, A. T., Hecht, S. M., Florentz, C. & Giege, R. Fe bleomycin as a probe of RNA conformation. Nucleic Acids Res. 24, 3399–3406 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Abraham, A. T., Lin, J. J., Newton, D. L., Rybak, S. & Hecht, S. M. RNA cleavage and inhibition of protein synthesis by bleomycin. Chem. Biol. 10, 45–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Weterings, E. & van Gent, D. C. The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair 3, 1425–1435 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Sugiyama, M., Kumagai, T., Hayashida, M., Maruyama, M. & Matoba, Y. The 1.6-A crystal structure of the copper(II)-bound bleomycin complexed with the bleomycin-binding protein from bleomycin-producing Streptomyces verticillus. J. Biol. Chem. 277, 2311–2320 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Wu, W. et al. Studies of Co Bleomycin A2 green: Its detailed structural characterization by NMR and molecular modeling and its sequence-specific interaction with DNA oligonucleotides. J. Am. Chem. Soc. 118, 1268–1280 (1996).

    Article  CAS  Google Scholar 

  107. Wu, J. C., Kozarich, J. W. & Stubbe, J. Mechanism of bleomycin: evidence for a rate-determining 4′-hydrogen abstraction from poly(dA-dU) associated with the formation of both free base and base propenal. Biochemistry 24, 7562–7568 (1985).

    Article  CAS  PubMed  Google Scholar 

  108. Rabow, L. E., Stubbe, J. & Kozarich, J. W. Identification and quantitation of the lesion accompanying base release in bleomycin-mediated DNA degradation. J. Am. Chem. Soc. 112, 3196–3203 (1990).

    Article  CAS  Google Scholar 

  109. Giloni, L., Takeshita, M., Johnson, F., Iden, C. & Grollman, A. P. Bleomycin-induced strand-scission of DNA. J. Biol. Chem. 256, 8608–8615 (1981).

    CAS  PubMed  Google Scholar 

  110. Burger, R. M., Berkowitz, A. R., Peisach, J. & Horwitz, S. B. Origin of malondialdehyde from DNA degraded by Fe(II)–bleomycin. J. Biol. Chem. 255, 11832–11838 (1980).

    CAS  PubMed  Google Scholar 

  111. Povirk, L. F., Han, Y. H. & Steighner, R. J. Structure of bleomycin-induced DNA double-strand breaks: predominance of blunt ends and single-base 5′ extensions. Biochemistry 28, 5808–5814 (1989). Rules for the sequence specificity of bleomycin-mediated dsDNA cleavage are presented.

    Article  CAS  PubMed  Google Scholar 

  112. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Sugiura, Y., Ishizu, K. & Miyoshi, K. Studies of metallobleomycins by electronic spectroscopy, electron spin resonance spectroscopy, and potentiometric titration. J. Antibiot. (Tokyo) 32, 453–461 (1979).

    Article  CAS  Google Scholar 

  114. Ehrenfeld, G. M. et al. Copper-dependent cleavage of DNA by bleomycin. Biochemistry 26, 931–942 (1987).

    Article  CAS  PubMed  Google Scholar 

  115. Ehrenfeld, G. M. et al. Copper(I)–bleomycin: structurally unique complex that mediates oxidative DNA strand scission. Biochemistry 24, 81–92 (1985).

    Article  CAS  PubMed  Google Scholar 

  116. Lee, J. W. et al. Implication of DNA polymerase (in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J. Biol. Chem. 279, 805–811 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JoAnne Stubbe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

APE1

ATM

bleomycin hydrolase

p53

POLβ

TDP1

XRCC4

National Cancer Institute

testicular cancer

Glossary

RADICAL

An atom or group of atoms with at least one unpaired electron. This feature makes a radical very chemically reactive.

OMICS

Refers to the study of biological systems, and includes genomics (DNA), proteomics (proteins) and metabolomics (small molecules).

INTERCALATION

Intercalation is a form of reversible interaction of drugs with the DNA double helix. Intercalating agents share common structural features such as the presence of planar polyaromatic systems which bind by insertion between DNA base-pairs in the minor or major groove of DNA, with a marked preference for 5′-pyrimidine-purine-3′ steps.

DICENTRIC CHROMOSOME

An abnormal chromosome with two centromeres.

RING CHROMOSOME

An abnormal chromosome in which the end of each chromosome arm has been deleted and the broken arms reunite to form a ring.

MITOTIC CELL DEATH

The type of cell death that results from failure to arrest the cell cycle before or during mitosis in response to DNA damage with hallmarks including nuclear fragmentation and multiple micronuclei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Stubbe, J. Bleomycins: towards better therapeutics. Nat Rev Cancer 5, 102–112 (2005). https://doi.org/10.1038/nrc1547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1547

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing