Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MGMT: its role in cancer aetiology and cancer therapeutics

Key Points

  • The DNA-repair protein O6-alkylguanine-DNA-alkyltransferase (AGT) is encoded by the gene O6-methylguanine-DNA-methyltransferase (MGMT).

  • AGT removes alkylating lesions at position O6 of guanine and therefore has an important role in maintaining normal cell physiology and genomic stability.

  • A broad range of expression of AGT is noted across tumours and normal tissues. Its expression also helps to prevent carcinogenesis and is a target for chemotherapy.

  • Overexpression of MGMT reduces the risk of carcinogenesis and the risk of mutations after exposure to methylating agents.

  • Loss of MGMT is associated with increased carcinogenic risk and increased sensitivity to methylating agents.

  • MGMT-promoter methylation shuts off MGMT expression in tumours and increases responsiveness to chemotherapy.

  • O6-benzylguanine is a specific inhibitor of AGT, but mutations in the active-site pocket of the protein can cause resistance to the drug.

  • MGMT genes with such mutations are effective for use in gene therapy for transducing drug resistance into haematopoietic stem cells, to protect these cells from the toxic effects of chemotherapy.

  • The physiological role of MGMT remains an area of active investigation.

Abstract

The DNA-repair protein O6-alkylguanine DNA alkyltransferase (AGT) has a wide range of activity in normal tissues and its evolutionary conservation indicates a fundamental role in cell physiology and maintenance of the genome. Through removal of alkylating lesions at O6 of guanine, AGT protects against mutagenesis and malignant transformation. In tumours, AGT provides resistance to treatment with alkylating agents, unless expression is lost by methylation of the promoter of the gene encoding AGT — O6-methylguanine-DNA-methyltransferase (MGMT) — or there is direct inhibition of AGT activity. When overexpressed in stem cells, MGMT serves as a drug-selection gene for gene therapy and protects normal tissues from the toxic effects of chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AGT repair process.
Figure 2: MGMT overexpression prevents MNU-induced T-cell lymphomas.
Figure 3: Crystal structure/model of O6-BG bound to AGT.
Figure 4: Hypersensitivity of Mgmt-knockout mice to nitrosoureas.
Figure 5: Deletion of AGT and pharmacokinetics of O6-BG after O6-BG infusion.
Figure 6: Mutant MGMT stem-cell selection.

Similar content being viewed by others

References

  1. Wood, R., Biggerstaff, M. & Shivji, M. K. Detection and measurement of nucleotide excision repair synthesis by mammalian cell extracts in vitro. Comp. Methods Enzymol. 7, 163–175 (1995).

    CAS  Google Scholar 

  2. Wilson, S. H. Mammalian base excision repair and DNA polymerase β. Mutat. Res. 407, 203–215 (1998).

    CAS  PubMed  Google Scholar 

  3. Karran, P. & Bignami, M. DNA damage tolerance, mismatch repair and genome instability. Bioessays 16, 833–839 (1994).

    CAS  PubMed  Google Scholar 

  4. Frei, J. et al. Alkylation of deoxyribonucleic acid in vivo in various organs of C57BL mice by the carcinogens N-methyl-N-nitrosourea, N-ethyl-N-nitrosourea, and ethyl methanesulphonate in relation to induction of thymic lymphoma. Biochem. J. 174, 1031–1044 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fong, L., Jensen, D. E. & Magee, P. N. DNA methyl-adduct dosimetry and 06alkylguanine-DNA alkyltransferase activity determinations in rat mammary carcinogenesis by procarbazine and N-methyl-N-nitrosourea. Carcinogenesis 11, 411–417 (1990).

    CAS  PubMed  Google Scholar 

  6. Dumenco, L. L. et al. The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science 259, 219–222 (1993).

    CAS  PubMed  Google Scholar 

  7. Lim, I. K. et al. Differential expression of O6-methylguanine-DNA methyltransferase during diethylnitrosamine-induced carcinogenesis and liver regeneration in Sprague–Dawley male rats. J. Cancer Res. Clin. Oncol. 125, 493–499 (1999).

    CAS  PubMed  Google Scholar 

  8. Peterson, L. A. et al. Interactions between methylating and pyridyloxobutylating agents in A/J mouse lungs: implications for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis. Cancer Res. 61, 5757–5763 (2001).

    CAS  PubMed  Google Scholar 

  9. Zaidi, N. H. et al. Transgenic expression of human MGMT protects against azoxymethane-induced aberrant crypt foci and G to A mutations in the K-ras oncogene of mouse colon. Carcinogenesis 16, 451–456 (1995).

    CAS  PubMed  Google Scholar 

  10. Posnick, L. M. & Samson, L. D. Influence of S-adenosylmethionine pool size on spontaneous mutation, dam methylation, and cell growth of Escherichia coli. J. Bacteriol. 181, 6756–6762 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Graves, R. J., Li, B. F. & Swann, P. F. Repair of synthetic oligonucleotides containing O6-methylguanine, O6-ethylguanine and O4-methylthymine, by O6-alkylguanine-DNA alkyltransferase. IARC Sci. Publ. 84, 41–43 (1987).

    Google Scholar 

  12. Gonzaga, P. E. & Brent, T. P. Affinity purification and characterization of human O6-alkylguanine-DNA alkyltransferase complexed with BCNU-treated, synthetic oligonucleotide. Nucleic Acids Res. 17, 6581–6590 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Day, R. S. I., Ziolkowski, C. H. J., Scudiero, D. A., Meyer, S. A. & Mattern, M. R. Human tumor cell strains defective in the repair of alkylation damage. Carcinogenesis 1, 21–32 (1980).

    CAS  PubMed  Google Scholar 

  14. Goth, R. & Rajewsky, M. F. Persistence of O6-ethylguanine in rat brain DNA: correlation with nervous-system-specific carcinogenesis by ethylnitrosourea. Proc. Natl Acad. Sci. 71, 639–643 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Balling, R. ENU mutagenesis: analyzing gene function in mice. Annu. Rev. Genomics Hum. Genet. 2, 463–492 (2001).

    CAS  PubMed  Google Scholar 

  16. Delaney, J. C. & Essigmann, J. M. Effect of sequence context on O6-methylguanine repair and replication in vivo. Biochemistry 40, 14968–14975 (2001).

    CAS  PubMed  Google Scholar 

  17. Allay, E., Veigl, M. & Gerson, S. L. Mice over-expressing human O6 alkylguanine-DNA alkyltransferase selectively reduce O6 methylguanine mediated carcinogenic mutations to threshold levels after N-methyl-N-nitrosourea. Oncogene 18, 3783–3787 (1999).

    CAS  PubMed  Google Scholar 

  18. Moriwaki, S. et al. Analysis of N-methyl-N-nitrosourea-induced mutations in a shuttle vector plasmid propagated in mouse O6-methylguanine-DNA methyltransferase-deficient cells in comparison with proficient cells. Cancer Res. 51, 6219–6223 (1991).

    CAS  PubMed  Google Scholar 

  19. Bronstein, S. M., Skopek, T. R. & Swenberg, J. A. Efficient repair of O6-ethylguanine, but not O4-ethylthymine or O2-ethylthymine, is dependent upon O6-alkylguanine-DNA alkyltransferase and nucleotide excision repair activities in human cells. Cancer Res. 52, 2008–2011 (1992).

    CAS  PubMed  Google Scholar 

  20. Minnick, D. T. et al. Specificity of bischloroethylnitrosourea-induced mutation in a Chinese hamster ovary cell line transformed to express human O6-alkylguanine-DNA alkyltransferase. Cancer Res. 53, 997–1003 (1993).

    CAS  PubMed  Google Scholar 

  21. Margison, G. P., Cooper, D. P. & Brennand, J. Cloning of the E. coli O6-methylguanine and methylphosphotriester methyltransferase gene using a functional DNA repair assay. Nucleic Acids Res. 13, 1939–1952 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tano, K. et al. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc. Natl Acad. Sci. USA 87, 686–690 (1990). Isolation and sequence of the human MGMT gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shiraishi, A. et al. Isolation and characterization of cDNA and genomic sequences for mouse O6-methylguanine-DNA methyltransferase. Carcinogenesis 13, 289–296 (1992).

    CAS  PubMed  Google Scholar 

  24. Moore, M. H. et al. Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli. EMBO J. 13, 1495–1501 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wibley, J. E., Pegg, A. E. & Moody, P. C. Crystal structure of the human O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Res. 28, 393–401 (2000). Crystal structure of the human O6-AG-DNA alkyltransferase protein, revealing the active-site pocket and the mechanisms of action.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Srivenugopal, K. S. & Ali-Osman, F. The DNA repair protein, O6-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 21, 5940–5945 (2002).

    CAS  PubMed  Google Scholar 

  27. Pegg, A. E. Repair of O6-alkylguanine by alkyltransferases. Mutat Res. 462, 83–100 (2000).

    CAS  PubMed  Google Scholar 

  28. Chen, F. Y. et al. Cytoplasmic sequestration of an O6-methylguanine-DNA methyltransferase enhancer binding protein in DNA repair-deficient human cells. Proc. Natl Acad. Sci. USA 94, 4348–4353 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim, A. & Li, B. F. The nuclear targeting and nuclear retention properties of a human DNA repair protein O6-methylguanine -DNA methyltransferase are both required for its nuclear localization: the possible implications. EMBO J. 15, 4050–4060 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Srivenugopal, K. S. et al. Protein phosphorylation is a regulatory mechanism for O6-alkylguanine-DNA alkyltransferase in human brain tumor cells. Cancer Res. 60, 282–287 (2000).

    CAS  PubMed  Google Scholar 

  31. Liu, L. et al. Rapid repair of O6-methylguanine-DNA adducts protects transgenic mice from N-methylnitrosourea-induced thymic lymphomas. Cancer Res. 54, 4648–4652 (1994).

    CAS  PubMed  Google Scholar 

  32. Nakatsuru, Y. et al. O6-methylguanine-DNA methyltransferase protects against nitrosamine-induced hepatocarcinogenesis. Proc. Natl Acad. Sci. USA 90, 6468–6472 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Becker, K. et al. Targeted expression of human O6-methylguanine-DNA methyltransferase (MGMT) in transgenic mice protects against tumor initiation in two-stage skin carcinogenesis. Cancer Res. 56, 3244–3249 (1996).

    CAS  PubMed  Google Scholar 

  34. Liu, L., Qin, X. & Gerson, S. L. Reduced lung tumorigenesis in human methylguanine DNA-methyltransferase transgenic mice achieved by expression of transgene within the target cell. Carcinogenesis 20, 279–284 (1999).

    CAS  PubMed  Google Scholar 

  35. Zhou, Z. Q. et al. Spontaneous hepatocellular carcinoma is reduced in transgenic mice overexpressing human O6-methylguanine-DNA methyltransferase. Proc. Natl Acad. Sci. USA 98, 12566–12571 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Qin, X. et al. Transgenic expression of human MGMT blocks the hypersensitivity of PMS2-deficient mice to low dose MNU thymic lymphomagenesis. Carcinogenesis 20, 1667–1673 (1999).

    CAS  PubMed  Google Scholar 

  37. Allay, E. et al. Potentiation of lymphomagenesis by methylnitrosourea in mice transgenic for LMO1 is blocked by O6-alkylguanine DNA-alkyltransferase. Oncogene 15, 2127–2132 (1997).

    CAS  PubMed  Google Scholar 

  38. Reese, J. S., Allay, E. & Gerson, S. L. Overexpression of human O6-alkylguanine DNA alkyltransferase (AGT) prevents MNU induced lymphomas in heterozygous p53 deficient mice. Oncogene 20, 5258–5263 (2001).

    CAS  PubMed  Google Scholar 

  39. Shiraishi, A., Sakumi, K. & Sekiguchi, M. Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase. Carcinogenesis 21, 1879–1883 (2000). This group first reported the phenotype of Mgmt loss in vivo , with increased mutagenesis, carcinogenesis and sensitivity to chemotherapy.

    CAS  PubMed  Google Scholar 

  40. Glassner, B. et al. DNA repair methyltransferase (MGMT) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents. Mutagenesis 14, 339–347 (1999).

    CAS  PubMed  Google Scholar 

  41. Kawate, H. et al. Separation of killing and tumorigenic effects of an alkylating agent in mice defective in two of the DNA repair genes. Proc. Natl Acad. Sci. USA 95, 5116–5120 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerson, S. L. et al. Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues. Carcinogenesis 7, 745–749 (1986).

    CAS  PubMed  Google Scholar 

  43. Povey, A. C. et al. Determinants of O6-alkylguanine-DNA alkyltransferase activity in normal and tumour tissue from human colon and rectum. Int. J. Cancer 85, 68–72 (2000).

    CAS  PubMed  Google Scholar 

  44. Belanich, M. et al. Intracellular localization and intercellular heterogeneity of the human DNA repair protein O6-methylguanine-DNA methyltransferase. Cancer Chemother Pharmacol. 37, 547–555 (1996).

    CAS  PubMed  Google Scholar 

  45. Silber, J. R. et al. Lack of the DNA repair protein O6-methylguanine-DNA methyltransferase in histologically normal brain adjacent to primary human brain tumors. Proc. Natl Acad. Sci. USA 93, 6941–6946 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerson, S. L. et al. Repair of O6-alkylguanine during DNA synthesis in murine bone marrow hematopoietic precursors. Cancer Res. 47, 89–95 (1987).

    CAS  PubMed  Google Scholar 

  47. Citron, M. et al. O6-methylguanine-DNA methyltransferase in human normal and tumor tissue from brain, lung and ovary. Cancer Res. 51, 4131–4134 (1991).

    CAS  PubMed  Google Scholar 

  48. Gerson, S. L. et al. Modulation of nitrosourea resistance in human colon cancer by O6-methylguanine. Biochem. Pharmacol. 43, 1101–1107 (1992).

    CAS  PubMed  Google Scholar 

  49. Gerson, S. L. & Willson, J. K. O6-alkylguanine-DNA alkyltransferase. A target for the modulation of drug resistance. Hematol. Oncol. Clin. North Am. 9, 431–450 (1995).

    CAS  PubMed  Google Scholar 

  50. Schold, S. Jr et al. O6-alkylguanine-DNA alkyltransferase and sensitivity to procarbazine in human brain-tumor xenografts. J. Neurosurg. 70, 573–577 (1989).

    PubMed  Google Scholar 

  51. Brent, T. P., Houghton, P. J. & Houghton, J. A. O6-alkylguanine-DNA alkyltransferase activity correlates with the therapeutic response of human rhabdomyosarcoma xenografts to 1-(2-chloroethyl)-3-(trans-4-methyl-cyclohexyl)-1-nitrosourea. Proc. Natl Acad. Sci. USA 82, 2985–2989 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, L., Markowitz, S. & Gerson, S. L. Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl) nitrosourea. Cancer Res. 56, 5375–5379 (1996).

    CAS  PubMed  Google Scholar 

  53. Aquilina, G. et al. N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosourea sensitivity in mismatch repair-defective human cells. Mutat Res. 381, 227–241 (1997).

    Google Scholar 

  54. Aquilina, G. et al. N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosourea sensitivity in mismatch repair-defective human cells. Cancer Res. 58, 135–141 (1998).

    CAS  PubMed  Google Scholar 

  55. Grombacher, T., Mitra, S. & Kaina, B. Induction of the alkyltransferase (MGMT) gene by DNA damaging agents and the glucocorticoid dexamethasone and comparison with the response of base excision repair genes. Carcinogenesis 17, 2329–2336 (1996).

    CAS  PubMed  Google Scholar 

  56. Biswas, T. et al. Activation of human O6-methylguanine-DNA methyltransferase gene by glucocorticoid hormone. Oncogene 18, 525–532 (1999).

    CAS  PubMed  Google Scholar 

  57. Vielhauer, V. et al. Cell type-specific induction of O6-alkylguanine-DNA alkyltransferase mRNA expression in rat liver during regeneration, inflammation and preneoplasia. J. Cancer Res. Clin. Oncol. 127, 591–602 (2001).

    CAS  PubMed  Google Scholar 

  58. Watts, G. S. et al. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol. Cell. Biol. 17, 5612–5619 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Esteller, M. et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 59, 793–797 (1999). First report of MGMT promoter methylation leading to loss of MGMT expression in human tumors in vivo.

    CAS  PubMed  Google Scholar 

  60. Kang, G. H. et al. Epstein–Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am. J. Pathol. 160, 787–794 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Patel, S. A., Graunke, D. M. & Pieper, R. O. Aberrant silencing of the CpG island-containing human O6-methylguanine DNA methyltransferase gene is associated with the loss of nucleosome-like positioning. Mol. Cell. Biol. 17, 5813–5822 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gilliland, F. D. et al. Glutathione S-transferase P1 and NADPH quinone oxidoreductase polymorphisms are associated with aberrant promoter methylation of P16INK4a and O6-methylguanine-DNA methyltransferase in sputum. Cancer Res. 62, 2248–2252 (2002).

    CAS  PubMed  Google Scholar 

  63. Bhakat, K. K. & Mitra, S. Regulation of the human O6-methylguanine-DNA methyltransferase gene by transcriptional coactivators cAMP response element-binding protein-binding protein and p300. J. Biol. Chem. 275, 34197–34204 (2000).

    CAS  PubMed  Google Scholar 

  64. Esteller, M. et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 60, 2368–2371 (2000).

    CAS  PubMed  Google Scholar 

  65. Park, T. J. et al. Methylation of O6-methylguanine-DNA methyltransferase gene is associated significantly with K-ras mutation, lymph node invasion, tumor staging, and disease free survival in patients with gastric carcinoma. Cancer 92, 2760–2768 (2001).

    CAS  PubMed  Google Scholar 

  66. Nakamura, M. et al. Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C→A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis 22, 1715–1719 (2001).

    CAS  PubMed  Google Scholar 

  67. Wolf, P. et al. O6-Methylguanine-DNA methyltransferase promoter hypermethylation shifts the p53 mutational spectrum in non-small cell lung cancer. Cancer Res. 61, 8113–8117 (2001).

    CAS  PubMed  Google Scholar 

  68. Zhang, Y. J. et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relationship to aflatoxin B1-DNA adducts and p53 mutation in hepatocellular carcinoma. Int. J. Cancer 103, 440–444 (2003).

    CAS  PubMed  Google Scholar 

  69. Hayashi, H. et al. Inactivation of O6-methylguanine-DNA methyltransferase in human lung adenocarcinoma relates to high-grade histology and worse prognosis among smokers. Jpn. J. Cancer Res. 93, 184–189 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kohya, N. et al. Deficient expression of O6-methylguanine-DNA methyltransferase combined with mismatch-repair proteins hMLH1 and hMSH2 is related to poor prognosis in human biliary tract carcinoma. Ann. Surg. Oncol. 9, 371–379 (2002).

    PubMed  Google Scholar 

  71. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000). Indication that loss of MGMT expression through promoter methylation improved disease prognosis after chemotherapy.

    CAS  PubMed  Google Scholar 

  72. Esteller, M. et al. Hypermethylation of the DNA repair gene O6-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J. Natl Cancer Inst. 94, 26–32 (2002).

    CAS  PubMed  Google Scholar 

  73. Dolan, M. E. & Schilsky, R. L. Silence is golden: gene hypermethylation and survival in large-cell lymphoma. J. Natl Cancer Inst. 94, 6–7 (2002).

    PubMed  Google Scholar 

  74. Jaeckle, K. A. et al. Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J. Clin. Oncol. 16, 3310–3315 (1998).

    CAS  PubMed  Google Scholar 

  75. Bobola, M. S. et al. Contribution of O6-methylguanine-DNA methyltransferase to monofunctional alkylating-agent resistance in human brain tumor-derived cell lines. Mol. Carcinog. 13, 70–80 (1995).

    CAS  PubMed  Google Scholar 

  76. Phillips, W. P. Jr & Gerson, S. L. Acquired resistance to O6-benzylguanine plus chloroethylnitrosoureas in human breast cancer. Cancer Chemother. Pharmacol. 44, 319–326 (1999).

    CAS  PubMed  Google Scholar 

  77. Willson, J. K. et al. Modulation of O6-alkylguanine alkyltransferase-directed DNA repair in metastatic colon cancers. J. Clin. Oncol. 13, 2301–2308 (1995).

    CAS  PubMed  Google Scholar 

  78. Dolan, M. E., Moschel, R. C. & Pegg, A. E. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc. Natl Acad. Sci. USA 87, 5368–5372 (1990). Discovery of O6-BG, a potent inhibitor of alkyltransferase.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, L. et al. Differential sensitivity of human and mouse alkyltransferase to O6-benzylguanine using a transgenic model. Cancer Res. 56, 1880–1885 (1996).

    CAS  PubMed  Google Scholar 

  80. Daniels, D. S. et al. Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J. 19, 1719–1730 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pegg, A. E., Dolan, M. E. & Moschel, R. C. Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog. Nucleic Acid Res. Mol. Biol. 51, 167–223 (1995).

    CAS  PubMed  Google Scholar 

  82. Gerson, S. L. et al. Synergistic efficacy of O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in a human colon cancer xenograft completely resistant to BCNU alone. Biochem. Pharmacol. 45, 483–491 (1993).

    CAS  PubMed  Google Scholar 

  83. Kreklau, E. L. et al. Prolonged inhibition of O6-methylguanine DNA methyltransferase in human tumor cells by O6-benzylguanine in vitro and in vivo. J. Pharmacol. Exp. Ther. 291, 1269–1275 (1999).

    CAS  PubMed  Google Scholar 

  84. Spiro, T. P. et al. O6-benzylguanine: a clinical trial establishing the biochemical modulatory dose in tumor tissue for alkyltransferase-directed DNA repair. Cancer Res. 59, 2402–2410 (1999). First report indicating that the biochemical modulatory dose of O6-BG causing complete inhibition of human tumour alkyltranseferase could be reached without toxicity.

    CAS  PubMed  Google Scholar 

  85. Schilsky, R. L. et al. Phase I clinical and pharmacological study of O6-benzylguanine followed by carmustine in patients with advanced cancer. Clin. Cancer Res. 6, 3025–3031 (2000).

    CAS  PubMed  Google Scholar 

  86. Friedman, H. S. et al. Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J. Clin. Oncol. 16, 3570–3575 (1998).

    CAS  PubMed  Google Scholar 

  87. Dowlati, A. et al. Sequential tumor biopsies in early phase clinical trials of anticancer agents for pharmacodynamic evaluation. Clin. Cancer Res. 7, 2971–2976 (2001).

    CAS  PubMed  Google Scholar 

  88. Dolan, M. E. et al. O6-benzylguanine in humans: metabolic, pharmacokinetic, and pharmacodynamic findings. J. Clin. Oncol. 16, 1803–1810 (1998).

    CAS  PubMed  Google Scholar 

  89. Long, L. & Dolan, M. E. Role of cytochrome P450 isoenzymes in metabolism of O6-benzylguanine: implications for dacarbazine activation. Clin. Cancer Res. 7, 4239–4244 (2001).

    CAS  PubMed  Google Scholar 

  90. Friedman, H. S. et al. Phase I trial of carmustine plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J. Clin. Oncol. 18, 3522–3528 (2000).

    CAS  PubMed  Google Scholar 

  91. Bahlis, N. et al. Phase II trial of O6benzylguanine and BCNU in multiple myeloma. Proc. Am. Soc. Clin. Oncol. 22, 602 (2003).

    Google Scholar 

  92. Apisarnthanarax, N. et al. Phase I clinical trial of O6benzylguanine and topical BCNU in the treatment of T-cell cutaneous lymphoma. Proc. Am. Soc. Clin. Oncol. 22, 571 (2002).

    Google Scholar 

  93. Rosenblum, M. et al. Phase I study of Gliadel combined with a continuous intravenous infusion of O6-benzylguanine in patients with recurrent malignant glioma. Proc. Am. Soc. Clin. Oncol. 21, 314 (2001).

    Google Scholar 

  94. Quinn, J. et al. Phase I trial of temozolomide plus O6–benzylguanine in the treatment of patients with recurrent or progressive cerebral anaplastic gliomas. Proc. Am. Soc. Clin. Oncol. 22, 103 (2003).

    Google Scholar 

  95. Friedman, H. et al. Phase I trial of temodar plus O6–benzylguanine in the treatment of patients with recurrent or progressive cerebral anaplastic gliomas. Proc. Am. Soc. Clin. Oncol. 22, 311 (2003).

    Google Scholar 

  96. Middleton, M. R. et al. Effect of O6-(4-bromothenyl)guanine on different temozolomide schedules in a human melanoma xenograft model. Int. J. Cancer 100, 615–617 (2002).

    CAS  PubMed  Google Scholar 

  97. Kokkinakis, D. M. et al. Eradication of human medulloblastoma tumor xenografts with a combination of O6-benzyl-2′-deoxyguanosine and 1,3-bis(2-chloroethyl)1-nitrosourea. Clin. Cancer Res. 5, 3676–3681 (1999).

    CAS  PubMed  Google Scholar 

  98. Manome, Y. et al. Adenoviral transfer of antisenses or ribozyme to O6-methylguanine-DNA methyltransferase mRNA in brain-tumor model resistant to chloroethyl-nitrosourea. AntiCancer Res. 22, 2029–2036 (2002).

    CAS  PubMed  Google Scholar 

  99. Mariani, L. et al. Ribozyme and free alkylated base: a dual approach for sensitizing Mex+ cells to the alkylating antineoplastic drug. Cancer Gene Ther. 7, 905–909 (2000).

    CAS  PubMed  Google Scholar 

  100. Wu, M. H. et al. Lack of evidence for a polymorphism at codon 160 of human O6-alkylguanine-DNA alkyltransferase gene in normal tissue and cancer. Clin Cancer Res. 5, 209–213 (1999).

    CAS  PubMed  Google Scholar 

  101. Wang, L. et al. Mutations of O6-methylguanine-DNA methyltransferase gene in esophageal cancer tissues from Northern China. Int. J. Cancer 71, 719–723 (1997).

    CAS  PubMed  Google Scholar 

  102. Xu-Welliver, M. et al. Role of codon 160 in the sensitivity of human O6-alkylguanine-DNA alkyltransferase to O6-benzylguanine. Biochem. Pharmacol. 58, 1279–1285 (1999).

    CAS  PubMed  Google Scholar 

  103. Deng, C. et al. Genetic polymorphism of human O6-alkylguanine-DNA alkyltransferase: identification of a missense variation in the active site region. Pharmacogenetics 9, 81–87 (1999).

    CAS  PubMed  Google Scholar 

  104. Kaur, T. B. et al. Role of polymorphisms in codons 143 and 160 of the O6-alkylguanine DNA alkyltransferase gene in lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 9, 339–342 (2000).

    CAS  PubMed  Google Scholar 

  105. Egyhazi, S. et al. Novel O6-methylguanine-DNA methyltransferase SNPs: a frequency comparison of patients with familial melanoma and healthy individuals in Sweden. Hum. Mutat. 20, 408–409 (2002).

    CAS  PubMed  Google Scholar 

  106. Rusin, M. et al. Novel genetic polymorphisms in DNA repair genes: O6-methylguanine-DNA methyltransferase (MGMT) and N-methylpurine-DNA glycosylase (MPG) in lung cancer patients from Poland. Hum. Mutat. 14, 269–270 (1999).

    CAS  PubMed  Google Scholar 

  107. Hazra, T. K. et al. Specific recognition of O6-methylguanine in DNA by active site mutants of human O6-methylguanine-DNA methyltransferase. Biochemistry 36, 5769–5776 (1997).

    CAS  PubMed  Google Scholar 

  108. Xu-Welliver, M., Kanugula, S. & Pegg, A. E. Isolation of human O6-alkylguanine-DNA alkyltransferase mutants highly resistant to inactivation by O6-benzylguanine. Cancer Res. 58, 1936–1945 (1998). Description of mutant MGMT genes that are O6-BG-resistant.

    CAS  PubMed  Google Scholar 

  109. Encell, L. P., Coates, M. M. & Loeb, L. A. Engineering human DNA alkyltransferases for gene therapy using random sequence mutagenesis. Cancer Res. 58, 1013–1020 (1998).

    CAS  PubMed  Google Scholar 

  110. Davis, B. M. et al. Applied molecular evolution of O6-benzylguanine-resistant DNA alkyltransferases in human hematopoietic cells. Proc. Natl Acad. Sci. USA 98, 4950–4954 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, L. et al. Chemotherapy-induced O6-benzylguanine-resistant alkyltransferase mutations in mismatch-deficient colon cancer. Cancer Res. 62, 3070–3076 (2002).

    CAS  PubMed  Google Scholar 

  112. Reese, J. S. et al. MGMT expression in murine bone marrow is a major determinant of animal survival after alkylating agent exposure. J. Hematother. Stem Cell Res. 10, 115–123 (2001).

    CAS  PubMed  Google Scholar 

  113. Lazarus, H. M. et al. High-dose carmustine, etoposide, and cisplatin and autologous bone marrow transplantation for relapsed and refractory lymphoma. J. Clin. Oncol. 10, 1682–1689 (1992).

    CAS  PubMed  Google Scholar 

  114. Davis, B. M., Koc, O. N. & Gerson, S. L. Limiting numbers of G156A O6-methylguanine-DNA methyltransferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection. Blood 95, 3078–3084 (2000). Indication that mutant MGMT genes delivered by gene transfer into haematopoietic stem cells can allow selective survival and at least 300-fold enrichment in vivo.

    CAS  PubMed  Google Scholar 

  115. Ragg, S. et al. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res. 60, 5187–5195 (2000).

    CAS  PubMed  Google Scholar 

  116. Bowman, J. et al. Myeloablation is not required to select and maintain expression of the drug resistance gene, mutant MGMT, in primary and secondary recipients. Mol. Ther. 8, 42–50 (2003).

    CAS  PubMed  Google Scholar 

  117. Koc, O. N. et al. δMGMT-transduced bone marrow infusion increases tolerance to O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea and allows intensive therapy of 1,3-bis(2-chloroethyl)-1-nitrosourea-resistant human colon cancer xenografts. Hum. Gene Ther. 10, 1021–1030 (1999).

    CAS  PubMed  Google Scholar 

  118. Abkowitz, J. et al. Evidence that the number of hematopoietic stem cells is conserved in mammals. Blood 100, 2665–2667 (2002).

    CAS  PubMed  Google Scholar 

  119. Zielske, S. P. & Gerson, S. L. Lentiviral transduction of P140K MGMT into human CD34+ hematopoietic progenitors at low multiplicity of infection confers significant resistance to BG/BCNU and allows selection in vitro. Mol. Ther. 5, 381–387 (2002).

    CAS  PubMed  Google Scholar 

  120. Zielske, S. et al. In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning. J. Clin. Invest. 112, 1561–1570 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tano, K. et al. Site-directed mutation of the Escherichia coli ada gene: effects of substitution of methyl acceptor cysteine-321 by histidine in Ada protein. J. Bacteriol. 171, 1535–1543 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Daniels, D. S. & Tainer, J. A. Conserved structural motifs governing the stoichiometric repair of alkylated DNA by O6-alkylguanine-DNA alkyltransferase. Mutat. Res. 460, 151–163 (2000).

    CAS  PubMed  Google Scholar 

  123. Iwakuma, T. et al. Organization and expression of the mouse gene for DNA repair methyltransferase. DNA Cell Biol. 15, 863–872 (1996).

    CAS  PubMed  Google Scholar 

  124. Page, J. et al. Preclinical toxicology study of O6-benzylguanine (NSC-637037) and BCNU (carmustine, NSC–409962) in male and female Beagle dogs. Proc. Am. Assoc. Cancer Res. 36, 328 (1994).

    Google Scholar 

  125. Wiid, I. et al. O6-alkylguanine-DNA alkyltransferase DNA repair in mycobacteria: pathogenic and non-pathogenic species differ. Tuberculosis 82, 45–53 (2002).

    CAS  PubMed  Google Scholar 

  126. Chinot, O. et al. Safety and efficacy of temozolomide in patients with recurrent anaplastic oligodendrogliomas after standard radiotherapy and chemotherapy. J. Clin. Oncol. 19, 2449–2455 (2001).

    CAS  PubMed  Google Scholar 

  127. Macdonald, D. Temozolomide for recurrent high-grade glioma. Semin. Oncol. 28, 3–12 (2001).

    CAS  PubMed  Google Scholar 

  128. Souliotis, V. L. et al. In vivo formation and repair of O6-methylguanine in human leukocyte DNA after intravenous exposure to dacarbazine. Carcinogenesis 12, 285–288 (1991).

    CAS  PubMed  Google Scholar 

  129. Spiro, T., Liu, L. & Gerson, S. New cytotoxic agents for the treatment of metastatic malignant melanoma: temozolomide and related alkylating agents in combination with guanine analogues to abrogate drug resistance. Forum (Genova) 10, 274–285 (2000).

    CAS  Google Scholar 

  130. Lazarus, H. M. et al. Recombinant granulocyte–macrophage colony-stimulating factor after autologous bone marrow transplantation for relapsed non-Hodgkin's lymphoma: blood and bone marrow progenitor growth studies. A phase II Eastern Cooperative Oncology Group Trial. Blood 78, 830–837 (1991).

    CAS  PubMed  Google Scholar 

  131. Ron, I. et al. Long-term follow-up in managing anaplastic astrocytoma by multimodality approach with surgery followed by postoperative radiotherapy and PCV-chemotherapy: phase II trial. Am. J. Clin. Oncol. 25, 296–302 (2002).

    PubMed  Google Scholar 

  132. Westphal, M. et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol. 5, 79–88 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sakumi, K. et al. Methylnitrosourea-induced tumorigenesis in MGMT gene knockout mice. Cancer Res. 57, 2415–2418 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health. The author thanks J. Reese, J. Roth and K. Lingus for figure preparation and for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colon cancer

gastrointestinal carcinoid tumours

gliomas

Hodgkin's lymphoma

lung cancer

melanoma

myeloma

non-Hodgkin's lymphoma

pancreatic cancer

retinoblastomas

LocusLink

CDKN1A

CDKN2A

KRAS

LMO1

MGMT

Mlh1

MSH2

MSH6

p53

Glossary

NUCLEOTIDE EXCISION REPAIR

(NER). A DNA-repair complex consisting of recognition, removal and synthetic proteins that repair bulky adducts in a transcription-coupled manner.

BASE EXCISION REPAIR

(BER). A DNA-repair pathway for single-base abnormalities consisting of a glycosylase, apurinic endonuclease, β-polymerase and other scaffolding and synthesis proteins.

MISMATCH REPAIR

A DNA repair complex that detects and repairs incorrectly paired nucleotides that are introduced during DNA replication.

SN1 DONOR

A substitution nucleophile reaction in which the rate-determining step occurs with only one molecule.

CpG ISLANDS

Short runs in DNA of cytosine–guanine repeats; when methylated at 5′C in promoter regions, gene silencing results.

HISTONE DEACETYLASE INHIBITOR

These inhibitors alter the acetylation pattern on key nuclear-DNA-bound histones, altering the chromatin pattern of nucleosomes and altering transcription-factor binding. In general, histone deacetylase inhibitors result in open chromatin configuration, increasing gene expression.

IC50

A measure of the concentration of drug that is needed to inhibit 50% of the enzyme.

GLIADEL WAFER

Wafers containing bis-(2-chloroethyl)-nitrosourea that are implanted into the tumour site at the time of surgery and slowly release the drug over 2–3 weeks.

RIBOZYMES

RNA molecules with catalytic activity. They can be engineered to cleave specific mRNAs, thereby blocking gene expression at the mRNA level.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerson, S. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4, 296–307 (2004). https://doi.org/10.1038/nrc1319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing