Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer immunoediting: from immunosurveillance to tumor escape

Abstract

The concept that the immune system can recognize and destroy nascent transformed cells was originally embodied in the cancer immunosurveillance hypothesis of Burnet and Thomas. This hypothesis was abandoned shortly afterwards because of the absence of strong experimental evidence supporting the concept. New data, however, clearly show the existence of cancer immunosurveillance and also indicate that it may function as a component of a more general process of cancer immunoediting. This process is responsible for both eliminating tumors and sculpting the immunogenic phenotypes of tumors that eventually form in immunocompetent hosts. In this review, we will summarize the historical and experimental basis of cancer immunoediting and discuss its dual roles in promoting host protection against cancer and facilitating tumor escape from immune destruction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three Es of cancer immunoediting.
Figure 2: A proposed model for the elimination phase of the cancer immunoediting process.

Similar content being viewed by others

References

  1. Ehrlich, P. Ueber den jetzigen stand der Karzinomforschung. Ned. Tijdschr. Geneeskd. 5, 273–290 (1909).

    Google Scholar 

  2. Silverstein, A.M. A History of Immunology (Academic, San Diego, CA, 1989).

  3. Old, L.J. & Boyse, E.A. Immunology of experimental tumors. Annu. Rev. Med. 15, 167–186 (1964).

    Article  CAS  PubMed  Google Scholar 

  4. Klein, G. Tumor antigens. Annu. Rev. Microbiol. 20, 223–252 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Burnet, F.M. Cancer—a biological approach. Brit. Med. J. 1, 841–847 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomas, L. in Cellular and Humoral Aspects of the Hypersensitive States (ed. Lawrence, H. S.) 529–532 (Hoeber-Harper, New York, 1959).

    Google Scholar 

  7. Burnet, F.M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27 (1970).

    Article  CAS  PubMed  Google Scholar 

  8. Burnet, F.M. Immunological factors in the process of carcinogenesis. Br. Med. Bull. 20, 154–158 (1964).

    Article  CAS  PubMed  Google Scholar 

  9. Kaplan, H.S. Role of immunologic disturbance in human oncogenesis: some facts and fancies. Br. J. Cancer 25, 620–634 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stutman, O. Immunodepression and malignancy. Adv. Cancer Res. 22, 261–422 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Grant, G.A. & Miller, J.F. Effect of neonatal thymectomy on the induction of sarcomata in C57BL mice. Nature 205, 1124–1125 (1965).

    Article  CAS  PubMed  Google Scholar 

  12. Nishizuka, Y., Nakakuki, K. & Usui, M. Enhancing effect of thymectomy on hepatotumorigenesis in Swiss mice following neonatal injection of 20-methylcholanthrene. Nature 205, 1236–1238 (1965).

    Article  Google Scholar 

  13. Trainin, N., Linker-Israeli, M., Small, M. & Boiato-Chen, L. Enhancement of lung adenoma formation by neonatal thymectomy in mice treated with 7,12-dimethylbenz(a)anthracene or urethan. Int. J. Cancer 2, 326–336 (1967).

    Article  CAS  PubMed  Google Scholar 

  14. Burstein, N.A. & Law, L.W. Neonatal thymectomy and non-viral mammary tumours in mice. Nature 231, 450–452 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. Sanford, B.H., Kohn, H.I., Daly, J.J. & Soo, S.F. Long-term spontaneous tumor incidence in neonatally thymectomized mice. J. Immunol. 110, 1437–1439 (1973).

    CAS  PubMed  Google Scholar 

  16. Klein, G. Immunological surveillance against neoplasia. Harvey Lect., 71–102 (1973).

  17. Flanagan, S.P. 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 8, 295–309 (1966).

    Article  CAS  PubMed  Google Scholar 

  18. Pantelouris, E.M. Absence of thymus in a mouse mutant. Nature 217, 370–371 (1968).

    Article  CAS  PubMed  Google Scholar 

  19. Stutman, O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science 183, 534–536 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Stutman, O. in Proceedings of the International Workshop on Nude Mice Vol. 1 (eds. Rygaard, J. & Poulsen, C.) 257–264 (Gustav Fischer, Stuttgart 1973).

    Google Scholar 

  21. Stutman, O. Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous and heterozygous matings and effect of age and carcinogen dose. J. Natl. Cancer Inst. 2, 353–358 (1979).

    Google Scholar 

  22. Outzen, H.C., Custer, R.P., Eaton, G.J. & Prehn, R.T. Spontaneous and induced tumor incidence in germfree “nude” mice. J. Reticuloendothel. Soc. 17, 1–9 (1975).

    CAS  PubMed  Google Scholar 

  23. Stutman, O. in The Nude Mouse in Experimental and Clinical Research (eds. Fogh, J. & Giovanella, B. C.) 411–435 (Academic, New York, 1978).

    Google Scholar 

  24. Rygaard, J. & Povlsen, C.O. Is immunological surveillance not a cell-mediated immune function? Transplantation 17, 135–136 (1974).

    Article  CAS  PubMed  Google Scholar 

  25. Rygaard, J. & Povlsen, C.O. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance. Acta Pathol. Microbiol. Scand. [B] Microbiol. Immunol. 82, 99–106 (1974).

    CAS  Google Scholar 

  26. Maleckar, J.R. & Sherman, L.A. The composition of the T cell receptor repertoire in nude mice. J. Immunol. 138, 3873–3876 (1987).

    CAS  PubMed  Google Scholar 

  27. Ikehara, S., Pahwa, R.N., Fernandes, G., Hansen, C.T. & Good, R.A. Functional T cells in athymic nude mice. Proc. Natl. Acad. Sci. USA 81, 886–888 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hunig, T. T-cell function and specificity in athymic mice. Immunol. Today 4, 84–87 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Heidelberger, C. Chemical carcinogenesis. Annu. Rev. Biochem. 44, 79–121 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Kouri, R.E. & Nebert, D.W. in Origins of Human Cancer (eds. Hiatt, H. H., Watson, J. D. & Winsten, J. A.) 811–835 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1977).

    Google Scholar 

  31. Hayday, A.C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Prehn, R.T. Perspectives on oncogenesis: does immunity stimulate or inhibit neoplasia? J. Reticuloenothel. Soc. 10, 1–16 (1970).

    Google Scholar 

  33. Thomas, L. On immunosurveillance in human cancer. Yale J. Biol. Med. 55, 329–333 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Herberman, R.B. & Holden, H.T. Natural cell-mediated immunity. Adv. Cancer Res. 27, 305–377 (1978).

    Article  CAS  PubMed  Google Scholar 

  36. Engel, A.M. et al. Methylcholanthrene-induced sarcomas in nude mice have short induction times and relatively low levels of surface MHC class I expression. APMIS 104, 629–639 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Engel, A.M., Svane, I.M., Rygaard, J. & Werdelin, O. MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice. Scand. J. Immunol. 45, 463–470 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Schuler, W. et al. Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46, 963–972 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Featherstone, C. & Jackson, S.P. DNA double-strand break repair. Curr. Biol. 9, R759–R761 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Dighe, A.S., Richards, E., Old, L.J. & Schreiber, R.D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN-γ receptors. Immunity 1, 447–456 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Kaplan, D.H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA 95, 7556–7561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Street, S.E., Cretney, E. & Smyth, M.J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood 97, 192–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Street, S.E., Trapani, J.A., MacGregor, D. & Smyth, M.J. Suppression of lymphoma and epithelial malignancies effected by interferon γ. J. Exp. Med. 196, 129–134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Russell, J.H. & Ley, T.J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. van den Broek, M.F. et al. Decreased tumor surveillance in perforin-deficient mice. J.Exp.Med. 184, 1781–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Smyth, M.J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smyth, M.J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Shankaran, V. et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Penn, I. Malignant Tumors in Organ Transplant Recipients (Springer-Verlag, New York, 1970).

  52. Gatti, R.A. & Good, R.A. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer 28, 89–98 (1971).

    Article  CAS  PubMed  Google Scholar 

  53. Penn, I. Posttransplant malignancies. Transplant Proc. 31, 1260–1262 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Birkeland, S.A. et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int. J. Cancer 60, 183–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Sheil, A.G.R. in Kidney Transplantation (ed. Morris, P. J.) 558–570 (Saunders, Philadelphia, 2001).

    Google Scholar 

  56. Boshoff, C. & Weiss, R. AIDS-related malignancies. Nature Rev. Cancer 2, 373–382 (2002).

    Article  CAS  Google Scholar 

  57. Hoover, R.N. in Origins of Human Cancer (eds. Hiatt, H. H., Watson, J. D. & Winsten, J. A.) 369–379 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1977).

    Google Scholar 

  58. Sheil, A.G. Cancer after transplantation. World J. Surg. 10, 389–396 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Penn, I. Malignant melanoma in organ allograft recipients. Transplantation 61, 274–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Penn, I. Sarcomas in organ allograft recipients. Transplantation 60, 1485–1491 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Pham, S.M. et al. Solid tumors after heart transplantation: lethality of lung cancer. Ann. Thorac. Surg. 60, 1623–1626 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Clark, W.H. Jr et al. Model predicting survival in stage I melanoma based on tumor progression. J. Natl. Cancer Inst. 81, 1893–1904 (1989).

    Article  PubMed  Google Scholar 

  63. Clemente, C.G. et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77, 1303–1310 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Mihm, M.C. Jr, Clemente, C.G. & Cascinelli, N. Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab. Invest. 74, 43–47 (1996).

    PubMed  Google Scholar 

  65. Rilke, F. et al. Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int. J. Cancer 49, 44–49 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Lipponen, P.K., Eskelinen, M.J., Jauhiainen, K., Harju, E. & Terho, R. Tumour infiltrating lymphocytes as an independent prognostic factor in transitional cell bladder cancer. Eur. J. Cancer 29A, 69–75 (1992).

    CAS  PubMed  Google Scholar 

  67. Nacopoulou, L., Azaris, P., Papacharalampous, N. & Davaris, P. Prognostic significance of histologic host response in cancer of the large bowel. Cancer 47, 930–936 (1981).

    Article  CAS  PubMed  Google Scholar 

  68. Naito, Y. et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 58, 3491–3494 (1998).

    CAS  PubMed  Google Scholar 

  69. Epstein, N.A. & Fatti, L.P. Prostatic carcinoma: some morphological features affecting prognosis. Cancer 37, 2455–2465 (1976).

    Article  CAS  PubMed  Google Scholar 

  70. Deligdisch, L., Jacobs, A.J. & Cohen, C.J. Histologic correlates of virulence in ovarian adenocarcinoma. II. Morphologic correlates of host response. Am. J. Obstet. Gynecol. 144, 885–889 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Jass, J.R. Lymphocytic infiltration and survival in rectal cancer. J. Clin. Pathol. 39, 585–589 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Palma, L., Di Lorenzo, N. & Guidetti, B. Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases. J. Neurosurg. 49, 854–861 (1978).

    Article  CAS  PubMed  Google Scholar 

  73. Uyttenhove, C., Van Snick, J. & Boon, T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. I. Rejection by syngeneic mice. J. Exp. Med. 152, 1175–1183 (1980).

    Article  CAS  PubMed  Google Scholar 

  74. Urban, J.L., Holland, J.M., Kripke, M.L. & Schreiber, H. Immunoselection of tumor cell variants by mice suppressed with ultraviolet radiation. J. Exp. Med. 156, 1025–1041 (1982).

    Article  CAS  PubMed  Google Scholar 

  75. Svane, I.M. et al. Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice. Eur. J. Immunol. 26, 1844–1850 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Smyth, M.J., Godfrey, D.I. & Trapani, J.A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol. 2, 293–299 (2001).

    Article  CAS  Google Scholar 

  79. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Yokoyama, W.M. Now you see it, now you don't! Nature Immunol. 1, 95–97 (2000).

    Article  CAS  Google Scholar 

  81. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bromberg, J.F., Horvath, C.M., Wen, Z., Schreiber, R.D. & Darnell, J.E. Jr. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon α and interferon γ. Proc. Natl. Acad. Sci. USA 93, 7673–7678 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kumar, A., Commane, M., Flickinger, T.W., Horvath, C.M. & Stark, G.R. Defective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278, 1630–1632 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Luster, A.D. & Ravetch, J.V. Biochemical characterization of a γ interferon-inducible cytokine (IP-10). J. Exp. Med. 166, 1084–1097 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Liao, F. et al. Human Mig chemokine: biochemical and functional characterization. J. Exp. Med. 182, 1301–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Cole, K.E. et al. Interferon-inducible T cell α chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med. 187, 2009–2021 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luster, A.D. & Leder, P. IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J. Exp. Med. 178, 1057–1065 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Sgadari, C., Angiolillo, A.L. & Tosato, G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87, 3877–3882 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Coughlin, C.M. et al. Tumor cell responses to IFN-γ affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9, 25–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Qin, Z. & Blankenstein, T. CD4+ T cell–mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN-γ receptor expression by nonhematopoietic cells. Immunity 12, 677–686 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Bancroft, G.J., Schreiber, R.D. & Unanue, E.R. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the scid mouse. Immunol. Rev. 124, 5–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Ikeda, H., Old, L.J. & Schreiber, R.D. The roles of IFN-γ in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 13, 95–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195, 161–169 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pardoll, D.M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol. 2, 227–238 (2002).

    Article  CAS  Google Scholar 

  97. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Smyth, M.J., Crowe, N.Y. & Godfrey, D.I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13, 459–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Noguchi, Y., Jungbluth, A., Richards, E. & Old, L.J. Effect of interleukin 12 on tumor induction by 3-methylcholanthrene. Proc. Natl. Acad. Sci. USA 93, 11798–11801 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by grants from the National Cancer Institute (CA43059 and CA76464 to R. D. S.), the Cancer Research Institute (to R. D. S., H.I and A.B.), the Ludwig Institute for Cancer Research (to R. D. S.), and the National Institute of Allergy and Infectious Diseases (to R. D. S. and G. P. D.). We thank V. Shankaran, K. Sheehan, A. Dighe, D. Kaplan, R. Uppaluri, C. Koebel, J. Bui, E. Stockert, E. Richards, M. White, C. Arthur and C. Brendel for their important roles in developing the cancer immunoediting concept and for helpful comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Schreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, G., Bruce, A., Ikeda, H. et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3, 991–998 (2002). https://doi.org/10.1038/ni1102-991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1102-991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing