Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Polycomb complex PRC2 and its mark in life

Abstract

Polycomb group proteins maintain the gene-expression pattern of different cells that is set during early development by regulating chromatin structure. In mammals, two main Polycomb group complexes exist — Polycomb repressive complex 1 (PRC1) and 2 (PRC2). PRC1 compacts chromatin and catalyses the monoubiquitylation of histone H2A. PRC2 also contributes to chromatin compaction, and catalyses the methylation of histone H3 at lysine 27. PRC2 is involved in various biological processes, including differentiation, maintaining cell identity and proliferation, and stem-cell plasticity. Recent studies of PRC2 have expanded our perspectives on its function and regulation, and uncovered a role for non-coding RNA in the recruitment of PRC2 to target genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Polycomb complexes PRC1 and PRC2.
Figure 2: Chromatin properties at PRC2 target genes in ES cells and differentiated somatic cells.
Figure 3: The many interactions of PRC2 with chromatin.
Figure 4: PRC2-mediated regulation of pluripotency and differentiation.

Similar content being viewed by others

References

  1. Lewis, P. Pc: Polycomb. Drosoph. Inf. Ser. 21, 69 (1949).

    Google Scholar 

  2. Lewis, E. B. A gene complex controlling segmentation in Drosophila . Nature 276, 565–570 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Schuettengruber, B. & Cavalli, G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136, 3531–3542 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20, 1110–1122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nature Rev. Mol. Cell Biol. 10, 697–708 (2009).

    Article  CAS  Google Scholar 

  7. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25, 3110–3122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitcomb, S. J., Basu, A., Allis, C. D. & Bernstein, E. Polycomb Group proteins: an evolutionary perspective. Trends Genet. 23, 494–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Shaver, S., Casas-Mollano, J. A., Cerny, R. L. & Cerutti, H. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas . Epigenetics 5, 301–302 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Ohno, K., McCabe, D., Czermin, B., Imhof, A. & Pirrotta, V. ESC, ESCL and their roles in Polycomb Group mechanisms. Mech. Dev. 125, 527–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hennig, L. & Derkacheva, M. Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet. 25, 414–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell 15, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, H., Kang, K. & Kim, J. AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res. 37, 2940–2950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, S., Robertson, G. P. & Zhu, J. A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. Gene 343, 69–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 26, 4078–4088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walker, E. et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6, 153–166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo . Mol. Cell. Biol. 28, 2718–2731 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Savla, U., Benes, J., Zhang, J. & Jones, R. S. Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 135, 813–817 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Jung, J., Mysliwiec, M. R. & Lee, Y. Roles of JUMONJI in mouse embryonic development. Dev. Dyn. 232, 21–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Peng, J. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nature Cell Biol. 12, 618–624 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Zee, B. M. et al. In vivo residue-specific histone methylation dynamics. J. Biol. Chem. 285, 3341–3350 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Tie, F. et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136, 3131–3141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trojer, P. & Reinberg, D. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell 28, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacob, Y. et al. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nature Struct. Mol. Biol. 16, 763–768 (2009).

    Article  CAS  Google Scholar 

  36. Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27, 3769–3779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swigut, T. & Wysocka, J. H3K27 demethylases, at long last. Cell 131, 29–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol. 9, 1428–1435 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Kanhere, A. et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 38, 675–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008). This paper compares genome enrichment of H3K27me3, H3K4me3 and DNA methylation in ES cells with that in terminally differentiated neurons, demonstrating the plasticity of these marks.

    Article  CAS  PubMed  Google Scholar 

  44. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Squazzo, S. L. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 16, 890–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster . Nature Genet. 38, 700–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Tolhuis, B. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster . Nature Genet. 38, 694–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Hawkins, R. D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Rosenfeld, J. A. et al. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics 10, 143 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Leeb, M. et al. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 24, 265–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Margueron, R. & Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nature Rev. Genet. 11, 285–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Mattout, A. & Meshorer, E. Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr. Opin. Cell Biol. 22, 334–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Vastenhouw, N. L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schuettengruber, B. et al. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol. 7, e13 (2009).

    Article  PubMed  CAS  Google Scholar 

  59. Creyghton, M. P. et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135, 649–661 (2008). This paper reports co-localization of the histone variant H2Az with PRC2 in undifferentiated ES cells, illustrating changes in chromatin structure while cells differentiate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brunner, A. L. et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19, 1044–1056 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilkinson, F. H., Park, K. & Atchison, M. L. Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc. Natl Acad. Sci. USA 103, 19296–19301 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xi, H. et al. Analysis of overrepresented motifs in human core promoters reveals dual regulatory roles of YY1. Genome Res. 17, 798–806 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Maenner, S. et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 8, e1000276 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2, E171 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010). This paper shows a widespread role for HOTAIR ncRNA in the regulation of PRC2 gene targeting, and suggests that HOTAIR bridges PRC2 and LSD1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Song, J. J., Garlick, J. D. & Kingston, R. E. Structural basis of histone H4 recognition by p55. Genes Dev. 22, 1313–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009). This paper reports that PRC2 function is regulated by the mark it deposits, thus providing a potential mechanism for the spreading of this mark.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, S. et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nature Cell Biol. 12, 1108–1114 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Kaneko, S. et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and upregulates its binding to HOTAIR ncRNA. Genes Dev. 24, 2615–2620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a . Mol. Cell 38, 662–674 (2010). In this paper, the authors suggested that ncRNA and H3K27me3 can work together to contribute to PRC1 recruitment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Francis, N. J., Follmer, N. E., Simon, M. D., Aghia, G. & Butler, J. D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro . Cell 137, 110–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Chamberlain, S. J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yuzyuk, T., Fakhouri, T. H., Kiefer, J. & Mango, S. E. The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos. Dev. Cell 16, 699–710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Endoh, M. et al. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135, 1513–1524 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Su, I. H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nature Immunol. 4, 124–131 (2003).

    Article  CAS  Google Scholar 

  85. Wang, L., Jin, Q., Lee, J. E., Su, I. H. & Ge, K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl Acad. Sci. USA 107, 7317–7322 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Caretti, G., Di Padova, M., Micales, B., Lyons, G. E. & Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18, 2627–2638 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karanikolas, B. D., Figueiredo, M. L. & Wu, L. Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. Mol. Cancer Res. 7, 1456–1465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, X. et al. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am. J. Pathol. 175, 1246–1254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet. 42, 181–185 (2010). This study is the first report that somatic mutations resulting in the inactivation of PRC2 are found in diseases.

    Article  CAS  PubMed  Google Scholar 

  95. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nature Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Karanikolas, B. D., Figueiredo, M. L. & Wu, L. Comprehensive evaluation of the role of EZH2 in the growth, invasion, and aggression of a panel of prostate cancer cell lines. Prostate 70, 675–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pereira, C. F., Piccolo, F. M., Tsubouchi, T., Sauer, S. & Ryan, N. ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6, 547–556 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Vales, E. Heard and R. Bonasio for crucial reading of this manuscript and active discussions. We apologize to authors whose studies could not be cited owing to space limitations. Work in the laboratory of R.M. is supported by the Institut Nationale du Cancer and Fondation pour la Recherche Medicale. Work in the laboratory of D.R. is funded by the US National Institutes of Health (grants RO1GM064844 and 4R37GM037120) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margueron, R., Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011). https://doi.org/10.1038/nature09784

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09784

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer