Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SMAD proteins control DROSHA-mediated microRNA maturation

This article has been updated

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA and protein synthesis. Aberrant miRNA expression leads to developmental abnormalities and diseases, such as cardiovascular disorders and cancer; however, the stimuli and processes regulating miRNA biogenesis are largely unknown. The transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) family of growth factors orchestrates fundamental biological processes in development and in the homeostasis of adult tissues, including the vasculature. Here we show that induction of a contractile phenotype in human vascular smooth muscle cells by TGF-β and BMPs is mediated by miR-21. miR-21 downregulates PDCD4 (programmed cell death 4), which in turn acts as a negative regulator of smooth muscle contractile genes. Surprisingly, TGF-β and BMP signalling promotes a rapid increase in expression of mature miR-21 through a post-transcriptional step, promoting the processing of primary transcripts of miR-21 (pri-miR-21) into precursor miR-21 (pre-miR-21) by the DROSHA (also known as RNASEN) complex. TGF-β- and BMP-specific SMAD signal transducers are recruited to pri-miR-21 in a complex with the RNA helicase p68 (also known as DDX5), a component of the DROSHA microprocessor complex. The shared cofactor SMAD4 is not required for this process. Thus, regulation of miRNA biogenesis by ligand-specific SMAD proteins is critical for control of the vascular smooth muscle cell phenotype and potentially for SMAD4-independent responses mediated by the TGF-β and BMP signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-21 is critical for the modulation of the VSMC phenotype by BMP.
Figure 2: Post-transcriptional regulation of miR-21 biosynthesis by TGF-β.
Figure 3: Interaction of SMADs with p68, a component of the DROSHA complex.
Figure 4: Association of SMADs with pri-miRNA promotes processing by DROSHA.
Figure 5: SMAD4-independent mechanism of maturation of pri-miRNA.

Similar content being viewed by others

Change history

  • 21 July 2008

    In the online-only extended Methods, the miR-214 primer sequence was corrected on 21st July 2008

References

  1. ten Dijke, P. & Arthur, H. M. Extracellular control of TGFβ signalling in vascular development and disease. Nature Rev. Mol. Cell Biol. 8, 857–868 (2007)

    Article  CAS  Google Scholar 

  2. Morrell, N. W. Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc. Am. Thorac. Soc. 3, 680–686 (2006)

    Article  CAS  Google Scholar 

  3. Owens, G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75, 487–517 (1995)

    Article  CAS  Google Scholar 

  4. Rensen, S. S. M., Doevendans, P. A. F. M. & van Eys, G. J. J. M. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Netherlands Heart J. 15, 100–108 (2007)

    Article  CAS  Google Scholar 

  5. Lagna, G. et al. Control of phenotypic plasticity of smooth muscle cells by BMP signaling through the myocardin-related transcription factors. J. Biol. Chem. 282, 37244–37255 (2007)

    Article  CAS  Google Scholar 

  6. Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004)

    Article  CAS  Google Scholar 

  7. Ji, R. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ. Res. 100, 1579–1588 (2007)

    Article  CAS  Google Scholar 

  8. Esau, C. C. Inhibition of microRNA with antisense oligonucleotides. Methods 44, 55–60 (2008)

    Article  CAS  Google Scholar 

  9. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Asangani, I. A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008)

    Article  CAS  Google Scholar 

  11. Frankel, L. B. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026–1033 (2007)

    Article  Google Scholar 

  12. Zhu, S. et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350–359 (2008)

    Article  CAS  Google Scholar 

  13. Hollnagel, A., Oehlmann, V., Heymer, J., Ruther, U. & Nordheim, A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274, 19838–19845 (1999)

    Article  CAS  Google Scholar 

  14. Chan, M. C. et al. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor. Mol. Cell. Biol. 27, 5776–5789 (2007)

    Article  CAS  Google Scholar 

  15. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Han, J. et al. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004)

    Article  CAS  Google Scholar 

  17. Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162–2167 (2004)

    Article  CAS  Google Scholar 

  18. Fukuda, T. et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nature Cell Biol. 9, 604–611 (2007)

    Article  CAS  Google Scholar 

  19. Kim, V. N. & Nam, J. W. Genomics of microRNA. Trends Genet. 22, 165–173 (2006)

    Article  CAS  Google Scholar 

  20. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376–385 (2005)

    Article  CAS  Google Scholar 

  21. Zhao, Y. & Srivastava, D. A developmental view of microRNA function. Trends Biochem. Sci. 32, 189–197 (2007)

    Article  CAS  Google Scholar 

  22. Lee, E. J. et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14, 35–42 (2007)

    Article  Google Scholar 

  23. Obernosterer, G., Leuschner, P. J., Alenius, M. & Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 12, 1161–1167 (2006)

    Article  CAS  Google Scholar 

  24. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006)

    Article  CAS  Google Scholar 

  25. Wulczyn, F. G. et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J. 21, 415–426 (2007)

    Article  CAS  Google Scholar 

  26. Guil, S. & Caceres, J. F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature Struct. Mol. Biol. 14, 591–596 (2007)

    Article  CAS  Google Scholar 

  27. Massague, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes Dev. 19, 2783–2810 (2005)

    Article  CAS  Google Scholar 

  28. Schmierer, B. & Hill, C. S. TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nature Rev. Mol. Cell Biol. 8, 970–982 (2007)

    Article  CAS  Google Scholar 

  29. Schmittgen, T. D. et al. Real-time PCR quantification of precursor and mature microRNA. Methods 44, 31–38 (2008)

    Article  CAS  Google Scholar 

  30. Korchynskyi, O. & ten Dijke, P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 277, 4883–4891 (2002)

    Article  CAS  Google Scholar 

  31. Loffler, D. et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110, 1330–1333 (2007)

    Article  Google Scholar 

  32. Zhu, S., Si, M. L., Wu, H. & Mo, Y. Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336 (2007)

    Article  CAS  Google Scholar 

  33. Warner, D. R. et al. Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem. Biophys. Res. Commun. 324, 70–76 (2004)

    Article  CAS  Google Scholar 

  34. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massagué, J. The TGF-β mediator Smad1 is directly phosphorylated and functionally activated by the BMP receptor kinase. Genes Dev. 11, 984–995 (1997)

    Article  CAS  Google Scholar 

  35. Gomis, R. R. et al. A FoxO–Smad synexpression group in human keratinocytes. Proc. Natl Acad. Sci. USA 103, 12747–12752 (2006)

    Article  ADS  CAS  Google Scholar 

  36. Levy, L. & Hill, C. S. Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol. Cell. Biol. 25, 8108–8125 (2005)

    Article  CAS  Google Scholar 

  37. Giehl, K., Imamichi, Y. & Menke, A. Smad4-independent TGF-β signaling in tumor cell migration. Cells Tissues Organs 185, 123–130 (2007)

    Article  CAS  Google Scholar 

  38. Ijichi, H. et al. Smad4-independent regulation of p21/WAF1 by transforming growth factor-β. Oncogene 23, 1043–1051 (2004)

    Article  CAS  Google Scholar 

  39. Si, M. L. et al. miR-21-mediated tumor growth. Oncogene 26, 2799–2803 (2007)

    Article  CAS  Google Scholar 

  40. Diederichs, S. & Haber, D. A. Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res. 66, 6097–6104 (2006)

    Article  CAS  Google Scholar 

  41. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006)

    Article  ADS  CAS  Google Scholar 

  42. Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005)

    Article  CAS  Google Scholar 

  43. Wiemer, E. A. The role of microRNAs in cancer: no small matter. Eur. J. Cancer 43, 1529–1544 (2007)

    Article  CAS  Google Scholar 

  44. Bierie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Rev. Cancer 6, 506–520 (2006)

    Article  CAS  Google Scholar 

  45. Arteaga, C. L. Inhibition of TGFβ signaling in cancer therapy. Curr. Opin. Genet. Dev. 16, 30–37 (2006)

    Article  CAS  Google Scholar 

  46. Bachman, K. E. & Park, B. H. Duel nature of TGF-β signaling: tumor suppressor vs. tumor promoter. Curr. Opin. Oncol. 17, 49–54 (2005)

    Article  CAS  Google Scholar 

  47. Glick, A. B. TGFβ1, back to the future: revisiting its role as a transforming growth factor. Cancer Biol. Ther. 3, 276–283 (2004)

    Article  CAS  Google Scholar 

  48. Massague, J. & Gomis, R. R. The logic of TGFβ signaling. FEBS Lett. 580, 2811–2820 (2006)

    Article  CAS  Google Scholar 

  49. Fujii, M. et al. Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol. Biol. Cell 10, 3801–3813 (1999)

    Article  CAS  Google Scholar 

  50. Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA-binding in TGFβ signaling. Cell 94, 585–594 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.-C. Chan and N. Neuman for critical discussion and H. Surks and M. Ivan for critical reading of the manuscript and technical advice. We also thank S. Kato, E. Olson, R. Bassel-Duby, Y.Y. Mo, K. Miyazono, B. Cochran and G.-R. Wang for sharing reagents. This work was supported by grants from the National Institute of Health HD042149 and HL082854 to A.H. and HL086572 to G.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Hata.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-21 with Legends. (PDF 13651 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, B., Hilyard, A., Lagna, G. et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56–61 (2008). https://doi.org/10.1038/nature07086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07086

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing