Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells

Abstract

Mesenchymal stromal cells (MSCs) have been shown to reverse radiation damage to marrow stem cells. We have evaluated the capacity of MSC-derived extracellular vesicles (MSC-EVs) to mitigate radiation injury to marrow stem cells at 4 h to 7 days after irradiation. Significant restoration of marrow stem cell engraftment at 4, 24 and 168 h post irradiation by exposure to MSC-EVs was observed at 3 weeks to 9 months after transplant and further confirmed by secondary engraftment. Intravenous injection of MSC-EVs to 500cGy exposed mice led to partial recovery of peripheral blood counts and restoration of the engraftment of marrow. The murine hematopoietic cell line, FDC-P1 exposed to 500cGy, showed reversal of growth inhibition, DNA damage and apoptosis on exposure to murine or human MSC-EVs. Both murine and human MSC-EVs reverse radiation damage to murine marrow cells and stimulate normal murine marrow stem cell/progenitors to proliferate. A preparation with both exosomes and microvesicles was found to be superior to either microvesicles or exosomes alone. Biologic activity was seen in freshly isolated vesicles and in vesicles stored for up to 6 months in 10% dimethyl sulfoxide at −80 °C. These studies indicate that MSC-EVs can reverse radiation damage to bone marrow stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Arora R, Chawla R, Marwah R, Kumar V, Goel R, Arora P et al. Medical radiation countermeasures for nuclear and radiological emergencies: current status and future perspectives. J Pharm Bioallied Sci 2010; 2: 202–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Williams JP, Brown SL, Georges GE, Hauer-Jensen M, Hill RP, Huser AK et al. Animal models for medical countermeasures to radiation exposure. Radiat Res 2010; 173: 557–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stewart FM, Zhong S, Lambert JF, Colvin GA, Abedi M, Dooner MS et al. Host marrow stem cell potential and engraftability at varying times after low-dose whole-body irradiation. Blood 2001; 98: 1246–1251.

    Article  CAS  PubMed  Google Scholar 

  4. Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB . Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010; 15: 360–371.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med 2013; 19: 295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herodin F, Drouet M . Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol 2005; 33: 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  7. Asano S . Current status of hematopoietic stem cell transplantation for acute radiation syndromes. Int J Hematol 2012; 95: 227–231.

    Article  PubMed  Google Scholar 

  8. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV . Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974; 17: 331–340.

    Article  CAS  PubMed  Google Scholar 

  9. Uccelli A, Moretta L, Pistoia V . Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726–736.

    Article  CAS  PubMed  Google Scholar 

  10. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G . Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 2012; 27: 3037–3042.

    Article  CAS  PubMed  Google Scholar 

  11. Caplan AI, Dennis JE . Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98: 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  12. Qiao S, Ren H, Shi Y, Liu W . Allogeneic compact bone-derived mesenchymal stem cell transplantation increases survival of mice exposed to lethal total body irradiation: a potential immunological mechanism. Chin Med J 2014; 127: 475–482.

    CAS  PubMed  Google Scholar 

  13. Hiwase SD, Dyson PG, To LB, Lewis ID . Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice. Stem Cells 2009; 27: 2293–2300.

    Article  PubMed  Google Scholar 

  14. Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant 2010; 16: 838–847.

    Article  PubMed  Google Scholar 

  15. Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H, Eggert K, Gehling UM, Rudolph C et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One 2011; 6: e14486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shim S, Lee SB, Lee JG, Jang WS, Lee SJ, Park S et al. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation. Exp hematol 2013; 41: 346–353.

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Balakrishnan I, Torok-Storb B, Pillai MM . Marrow stromal cells infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol 2012; 2012: 142530.

    PubMed  PubMed Central  Google Scholar 

  18. Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 2003; 31: 413–420.

    Article  CAS  PubMed  Google Scholar 

  19. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L . Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 2010; 78: 838–848.

    Article  CAS  PubMed  Google Scholar 

  20. Aliotta JM, Pereira M, Li M, Amaral A, Sorokina A, Dooner MS et al. Stable cell fate changes in marrow cells induced by lung-derived microvesicles. J Extracell Vesicles 2012; 1: e18163.

    Article  Google Scholar 

  21. Aliotta JM, Sanchez-Guijo FM, Dooner GJ, Johnson KW, Dooner MS, Greer KA et al. Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 2007; 25: 2245–2256.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Trams EG, Lauter CJ, Salem N Jr, Heine U . Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 1981; 645: 63–70.

    Article  CAS  PubMed  Google Scholar 

  23. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10: 1470–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.

    Article  CAS  PubMed  Google Scholar 

  25. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20: 847–856.

    Article  CAS  PubMed  Google Scholar 

  26. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 2009; 20: 1053–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 2012; 30: 1556–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 2010; 4: 214–222.

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg LR, Dooner MS, Johnson KW, Papa EF, Pereira MG, Del Tatto M et al. The murine long-term multi-lineage renewal marrow stem cell is a cycling cell. Leukemia 2014; 28: 813–822.

    Article  CAS  PubMed  Google Scholar 

  30. Becker PS, Nilsson SK, Li Z, Berrios VM, Dooner MS, Cooper CL et al. Adhesion receptor expression by hematopoietic cell lines and murine progenitors: modulation by cytokines and cell cycle status. Exp Hematol 1999; 27: 533–541.

    Article  CAS  PubMed  Google Scholar 

  31. Phinney DG . Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion. Methods Mol Biol 2008; 449: 171–186.

    CAS  PubMed  Google Scholar 

  32. Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 2010; 5: 550–560.

    Article  CAS  PubMed  Google Scholar 

  33. Thery C, Amigorena S, Raposo G, Clayton A . Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Chapter 3: Unit 3 22.

    PubMed  Google Scholar 

  34. Stewart FM, Zhong S, Wuu J, Hsieh C, Nilsson SK, Quesenberry PJ . Lymphohematopoietic engraftment in minimally myeloablated hosts. Blood 1998; 91: 3681–3687.

    CAS  PubMed  Google Scholar 

  35. Sharma A, Singh K, Almasan A . Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol 2012; 920: 613–626.

    Article  CAS  PubMed  Google Scholar 

  36. Wang T, Liao T, Wang H, Deng W, Yu D . Transplantation of bone marrow stromal cells overexpressing human vascular endothelial growth factor 165 enhances tissue repair in a rat model of radiation-induced injury. Chin Med J 2014; 127: 1093–1099.

    CAS  PubMed  Google Scholar 

  37. Lim JY, Ra JC, Shin IS, Jang YH, An HY, Choi JS et al. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PLoS One 2013; 8: e71167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horton JA, Hudak KE, Chung EJ, White AO, Scroggins BT, Burkeen JF et al. Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem cells 2013; 31: 2231–2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shim S, Lee SB, Lee JG, Jang WS, Lee SJ, Park S et al. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation. Exp Hematol 2013; 41: 346–353 e342.

    Article  CAS  PubMed  Google Scholar 

  40. Drouet M, Mourcin F, Grenier N, Delaunay C, Mayol JF, Lataillade JJ et al. Mesenchymal stem cells rescue CD34+ cells from radiation-induced apoptosis and sustain hematopoietic reconstitution after coculture and cografting in lethally irradiated baboons: is autologous stem cell therapy in nuclear accident settings hype or reality? Bone Marrow Transplant 2005; 35: 1201–1209.

    Article  CAS  PubMed  Google Scholar 

  41. Saha S, Bhanja P, Kabarriti R, Liu L, Alfieri AA, Guha C . Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One 2011; 6: e24072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Chen XH, Si YJ, Li ZJ, Gao L, Gao L et al. Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells. PLoS One 2012; 7: e31741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bartsch K, Al-Ali H, Reinhardt A, Franke C, Hudecek M, Kamprad M et al. Mesenchymal stem cells remain host-derived independent of the source of the stem-cell graft and conditioning regimen used. Transplantation 2009; 87: 217–221.

    Article  PubMed  Google Scholar 

  44. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005; 115: 1743–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C . Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005; 289: F31–F42.

    Article  PubMed  Google Scholar 

  46. Morigi M, Introna M, Imberti B, Corna D, Abbate M, Rota C et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 2008; 26: 2075–2082.

    Article  CAS  PubMed  Google Scholar 

  47. Bi B, Guo J, Marlier A, Lin SR, Cantley LG . Erythropoietin expands a stromal cell population that can mediate renoprotection. Am J Physiol Renal Physiol 2008; 295: F1017–F1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 2010; 14: 1605–1618.

    Article  CAS  PubMed  Google Scholar 

  49. Bruno S, Camussi G . Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatr Nephrol 2013; 28: 2249–2254.

    Article  PubMed  Google Scholar 

  50. Raposo G, Stoorvogel W . Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200: 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aliotta JM, Pereira M, Johnson KW, de Paz N, Dooner MS, Puente N et al. Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Exp Hematol 2010; 38: 233–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J Am Soc Nephrol 2015; 26: 2349–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis 2013; 4: e544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim DK, Lee J, Kim SR, Choi DS, Yoon YJ, Kim JH et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 2015; 31: 933–939.

    Article  CAS  PubMed  Google Scholar 

  55. Muller G . Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes 2012; 5: 247–282.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Radford IR, Aldridge DR . Importance of DNA damage in the induction of apoptosis by ionizing radiation: effect of the scid mutation and DNA ploidy on the radiosensitivity of murine lymphoid cell lines. Int J Radiat Biol 1999; 75: 143–153.

    Article  CAS  PubMed  Google Scholar 

  57. Mukherjee D, Coates PJ, Rastogi S, Lorimore SA, Wright EG . Radiation-induced bone marrow apoptosis, inflammatory bystander-type signaling and tissue cytotoxicity. Int J Radiat Biol 2013; 89: 139–146.

    Article  CAS  PubMed  Google Scholar 

  58. Verheij M, Bartelink H . Radiation-induced apoptosis. Cell Tissue Res 2000; 301: 133–142.

    Article  CAS  PubMed  Google Scholar 

  59. Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 2012; 7: e33115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kovalenko OA, Azzam EI, Ende N . Human umbilical-cord-blood mononucleated cells enhance the survival of lethally irradiated mice: dosage and the window of time. J Radiat Res 2013; 54: 1010–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants 5UH2TR000880, 3UH3TR000880-03S1, 5R01HL103726, 5P20GM103468 and 5T32HL116249. We thank the Flow Cytometry Core at Division of Hematology/Oncology in Rhode Island Hospital, for providing excellent service. We also thank Rebecca Lynn, Research Administrator, for her assistance on this project.

Author contributions

This study was designed, supervised and coordinated by PQ. The manuscript was written by SW, revised by PQ and commented on by all authors. SW designed, performed experiments, collected, analyzed and interpreted data. MD designed and coordinated study. YC and CS performed experiments. EP and YD performed flow cytometry analysis. MDT, MP and AC conducted bleeding animals for engraftment analysis. MD, LG and JA contributed to mice transplantation, DC, SB and FC provided technical advice, and GC gave conceptual advice and GC and DC edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Wen or P Quesenberry.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Dooner, M., Cheng, Y. et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia 30, 2221–2231 (2016). https://doi.org/10.1038/leu.2016.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.107

This article is cited by

Search

Quick links