Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia

A Corrigendum to this article was published on 10 December 2014

Abstract

The MIR-15A/-16-1 tumor suppressor microRNAs (miRNAs) are deleted in leukemic cells from more than 50% of patients with chronic lymphocytic leukemia (CLL). As these miRNAs are also less abundant in patients without genomic deletion, their downregulation in CLL is likely to be caused by additional mechanisms. We found the primary transcripts (pri-miRNAs) of MIR-15a/-16/-15b to be elevated and processing intermediates (precursor miRNAs) to be reduced in cells from CLL patients (22/38) compared with non-malignant B-cells (n=14), indicating a block of miRNA maturation at the DROSHA processing step. Using a luciferase reporter assay for pri-miR processing we validated the defect in primary CLL cells. The block of miRNA maturation is restricted to specific miRNAs and can be found in the cell line MEC-2, but not in MEC-1, even though both are derived from the same CLL patient. In these cells, the RNA-specific deaminase ADARB1 leads to reduced pri-miRNA processing, but full processing efficiency is recovered upon deletion of the RNA-binding domains or nuclear localization of ADARB1. Thus, we show that, apart from genomic deletion or transcriptional downregulation, aberrant processing of miRNA leads to specific reduction of miRNAs in leukemic cells. This represents a novel oncogenic mechanism in the pathogenesis of CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eulalio A, Huntzinger E, Izaurralde E . Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132: 9–14.

    Article  CAS  PubMed  Google Scholar 

  3. Kuchenbauer F, Morin RD, Argiropoulos B, Petriv OI, Griffith M, Heuser M et al. In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res 2008; 18: 1787–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farfsing A, Engel F, Seiffert M, Hartmann E, Ott G, Rosenwald A et al. Gene knockdown studies revealed CCDC50 as a candidate gene in mantle cell lymphoma and chronic lymphocytic leukemia. Leukemia 2009; 23: 2018–2026.

    Article  CAS  PubMed  Google Scholar 

  5. Grasedieck S, Scholer N, Bommer M, Niess JH, Tumani H, Rouhi A et al. Impact of serum storage conditions on microRNA stability. Leukemia 2012; 26: 2414–2416.

    Article  CAS  PubMed  Google Scholar 

  6. Grasedieck S, Sorrentino A, Langer C, Buske C, Dohner H, Mertens D et al. Circulating microRNAs in hematological diseases: principles, challenges and perspectives. Blood 2013; 121: 4977–4984.

    Article  CAS  PubMed  Google Scholar 

  7. Rucker FG, Russ AC, Cocciardi S, Kett H, Schlenk RF, Botzenhardt U et al. Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance. Leukemia 2013; 27: 353–361.

    Article  CAS  PubMed  Google Scholar 

  8. Kuchenbauer F, Mah SM, Heuser M, McPherson A, Ruschmann J, Rouhi A et al. Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood 2011; 118: 3350–3358.

    Article  CAS  PubMed  Google Scholar 

  9. Davis BN, Hata A . microRNA in Cancer—-The involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer 2010; 1: 1100–1114.

    Article  Google Scholar 

  10. Bhattacharya N, Diener S, Idler IS, Barth TF, Rauen J, Habermann A et al. Non-malignant B cells and chronic lymphocytic leukemia cells induce a pro-survival phenotype in CD14+ cells from peripheral blood. Leukemia 2011; 25: 722–726.

    Article  CAS  PubMed  Google Scholar 

  11. Herman SE, Sun X, McAuley EM, Hsieh MM, Pittaluga S, Raffeld M et al. Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia 2013; e-pub ahead of print 26 April 2013 doi:10.1038/leu.2013.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bullinger L, Leupolt E, Schaffner C, Mertens D, Bentz M, Lichter P et al. BCL10 is not the gene inactivated by mutation in the 1p22 deletion region in mantle cell lymphoma. Leukemia 2000; 14: 1490–1492.

    Article  CAS  PubMed  Google Scholar 

  13. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  14. Zenz T, Vollmer D, Trbusek M, Smardova J, Benner A, Soussi T et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia 2010; 24: 2072–2079.

    Article  CAS  PubMed  Google Scholar 

  15. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stilgenbauer S, Nickolenko J, Wilhelm J, Wolf S, Weitz S, Dohner K et al. Expressed sequences as candidates for a novel tumor suppressor gene at band 13q14 in B-cell chronic lymphocytic leukemia and mantle cell lymphoma. Oncogene 1998; 16: 1891–1897.

    Article  CAS  PubMed  Google Scholar 

  18. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T . Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 2007; 21: 2442–2451.

    Article  CAS  PubMed  Google Scholar 

  19. Mertens D, Philippen A, Ruppel M, Allegra D, Bhattacharya N, Tschuch C et al. Chronic lymphocytic leukemia and 13q14: miRs and more. Leuk Lymphoma 2009; 50: 502–505.

    Article  CAS  PubMed  Google Scholar 

  20. Mertens D, Wolf S, Schroeter P, Schaffner C, Dohner H, Stilgenbauer S et al. Down-regulation of candidate tumor suppressor genes within chromosome band 13q14.3 is independent of the DNA methylation pattern in B-cell chronic lymphocytic leukemia. Blood 2002; 99: 4116–4121.

    Article  CAS  PubMed  Google Scholar 

  21. Mertens D, Wolf S, Tschuch C, Mund C, Kienle D, Ohl S et al. Allelic silencing at the tumor-suppressor locus 13q14.3 suggests an epigenetic tumor-suppressor mechanism. Proc Natl Acad Sci USA 2006; 103: 7741–7746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garding A, Bhattacharya N, Claus R, Ruppel M, Tschuch C, Filarsky K et al. Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia Is linked to the <italic>In Cis</italic> downregulation of a gene cluster that targets NF-kB. PLoS Genet 2013; 9: e1003373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allen JE, Hough RE, Goepel JR, Bottomley S, Wilson GA, Alcock HE et al. Identification of novel regions of amplification and deletion within mantle cell lymphoma DNA by comparative genomic hybridization. Br J Haematol 2002; 116: 291–298.

    Article  CAS  PubMed  Google Scholar 

  24. Sander S, Bullinger L, Leupolt E, Benner A, Kienle D, Katzenberger T et al. Genomic aberrations in mantle cell lymphoma detected by interphase fluorescence in situ hybridization. Incidence and clinicopathological correlations. Haematologica 2008; 93: 680–687.

    Article  CAS  PubMed  Google Scholar 

  25. Kohlhammer H, Schwaenen C, Wessendorf S, Holzmann K, Kestler HA, Kienle D et al. Genomic DNA-chip hybridization in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood 2004 2004; 104: 795–801.

    Article  CAS  PubMed  Google Scholar 

  26. Lens D, Matutes E, Catovsky D, Coignet LJ . Frequent deletions at 11q23 and 13q14 in B cell prolymphocytic leukemia (B-PLL). Leukemia 2000; 14: 427–430.

    Article  CAS  PubMed  Google Scholar 

  27. Corcoran MM, Hammarsund M, Zhu C, Lerner M, Kapanadze B, Wilson B et al. DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse. Genes Chromosomes Cancer 2004; 40: 285–297.

    Article  CAS  PubMed  Google Scholar 

  28. Mertens D, Stilgenbauer S . CLL and deletion 13q14: merely the miRs? Blood 2012; 119: 2974–2975.

    Article  CAS  PubMed  Google Scholar 

  29. Lerner M, Harada M, Loven J, Castro J, Davis Z, Oscier D et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res 2009; 315: 2941–2952.

    Article  CAS  PubMed  Google Scholar 

  30. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.

    Article  CAS  PubMed  Google Scholar 

  31. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166–5171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Basso K, Sumazin P, Morozov P, Schneider C, Maute RL, Kitagawa Y et al. Identification of the human mature B cell miRNome. Immunity 2009; 30: 744–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.

    Article  CAS  PubMed  Google Scholar 

  34. Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G et al. Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood 2012; 119: 2981–2990.

    Article  CAS  PubMed  Google Scholar 

  35. Shin VY, Jin H, Ng EK, Cheng AS, Chong WW, Wong CY et al. NF-kappaB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis 2011; 32: 240–245.

    Article  CAS  PubMed  Google Scholar 

  36. Ofir M, Hacohen D, Ginsberg D . miR-15 and miR-16 Are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res 2011; 9: 440–447.

    Article  CAS  PubMed  Google Scholar 

  37. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  PubMed  Google Scholar 

  38. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Allegra D, Mertens D . In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system. Biochem Biophys Res Commun 2011; 406: 501–505.

    Article  CAS  PubMed  Google Scholar 

  40. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim VN, Han J, Siomi MC . Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10: 126–139.

    Article  CAS  PubMed  Google Scholar 

  42. Edelmann J, Holzmann K, Miller F, Winkler D, Buhler A, Zenz T et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 2012; 120: 4783–4794.

    Article  CAS  PubMed  Google Scholar 

  43. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010; 376: 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  44. Garding A, Bhattacharya N, Haebe S, Muller F, Weichenhan D, Idler I et al. TCL1A and ATM are co-expressed in chronic lymphocytic leukemia cells without deletion of 11q. Haematologica 2013; 98: 269–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dyer BW, Ferrer FA, Klinedinst DK, Rodriguez R . A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem 2000; 282: 158–161.

    Article  CAS  PubMed  Google Scholar 

  46. Kim YK, Yeo J, Kim B, Ha M, Kim VN . Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell 2012; 46: 893–895.

    Article  CAS  PubMed  Google Scholar 

  47. Heale BS, Keegan LP, McGurk L, Michlewski G, Brindle J, Stanton CM et al. Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J 2009; 28: 3145–3156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Durig J et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 2012; 209: 2183–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stadler PF, Chen JJ, Hackermuller J, Hoffmann S, Horn F, Khaitovich P et al. Evolution of vault RNAs. Mol Biol Evol 2009; 26: 1975–1991.

    Article  CAS  PubMed  Google Scholar 

  50. Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009; 459: 1010–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9: 604–611.

    Article  CAS  PubMed  Google Scholar 

  52. Seiffert M, Stilgenbauer S, Dohner H, Lichter P . Efficient nucleofection of primary human B cells and B-CLL cells induces apoptosis, which depends on the microenvironment and on the structure of transfected nucleic acids. Leukemia 2007; 21: 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  53. Stacchini A, Aragno M, Vallario A, Alfarano A, Circosta P, Gottardi D et al. MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leuk Res 1999; 23: 127–136.

    Article  CAS  PubMed  Google Scholar 

  54. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 3118–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlosser A et al. Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia 2010; 12: 326–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O . miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 2010; 329: 1537–1541.

    Article  CAS  PubMed  Google Scholar 

  57. Lee J, Tattoli I, Wojtal KA, Vavricka SR, Philpott DJ, Girardin SE . pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. J Biol Chem 2009; 284: 23818–23829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Laxminarayana D, O'Rourke KS, Maas S, Olorenshaw I . Altered editing in RNA editing adenosine deaminase ADAR2 gene transcripts of systemic lupus erythematosus T lymphocytes. Immunology 2007; 121: 359–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu M, Wells KS, Emeson RB . Substrate-dependent contribution of double-stranded RNA-binding motifs to ADAR2 function. Mol Biol Cell 2006; 17: 3211–3220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hundley HA, Bass BL . ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem Sci 2010; 35: 377–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu J, Chen G, Feng L, Zhang W, Pelicano H, Wang F et al. Loss of p53 and altered miR15-a/16-1short right arrowMCL-1 pathway in CLL: insights from TCL1-Tg:p53 mouse model and primary human leukemia cells. Leukemia 2013; e-pub ahead of print 23 April 2013 doi:10.1038/leu.2013.125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Winter J, Jung S, Keller S, Gregory RI, Diederichs S . Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11: 228–234.

    Article  CAS  PubMed  Google Scholar 

  63. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  64. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009; 23: 2700–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 2009; 41: 365–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Muralidhar B, Winder D, Murray M, Palmer R, Barbosa-Morais N, Saini H et al. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol 2011 Mar, 14.

  67. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68: 3566–3572.

    Article  CAS  PubMed  Google Scholar 

  68. Ota H, Sakurai M, Gupta R, Valente L, Wulff BE, Ariyoshi K et al. ADAR1 Forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing. Cell 2013; 153: 575–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang JH, Nie Y, Zhao Q, Su Y, Pypaert M, Su H et al. Intracellular localization of differentially regulated RNA-specific adenosine deaminase isoforms in inflammation. J Biol Chem 2003; 278: 45833–45842.

    Article  CAS  PubMed  Google Scholar 

  70. Caligaris-Cappio F . Inflammation, the microenvironment and chronic lymphocytic leukemia. Haematologica 2011; 96: 353–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM et al. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nature Genet 2009; 41: 829–832.

    Article  CAS  PubMed  Google Scholar 

  72. Schuh A, Becq J, Humphray S, Alexa A, Burns A, Clifford R et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 2012; 120: 4191–4196.

    Article  CAS  PubMed  Google Scholar 

  73. Desterro JM, Keegan LP, Lafarga M, Berciano MT, O’Connell M, Carmo-Fonseca M . Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 2003; 116 (Pt 9): 1805–1818.

    Article  CAS  PubMed  Google Scholar 

  74. George CX, Gan Z, Liu Y, Samuel CE . Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 2011; 31: 99–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the CLL patients and healthy probands for the generous donation of their primary tissue. We would also like to thank Stefan Fröhling and Claudia Scholl for their comments and to Doris Winter for her excellent technical support. This work was supported by the DKFZ intramural funding scheme (K109), by the Sander Foundation (no. 2010.036.1), by the Deutsche José Carreras Leukämie-Stiftung (R06/13v) and by the Deutsche Krebshilfe (Max-Eder Programme, no. 109321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Mertens.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allegra, D., Bilan, V., Garding, A. et al. Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia 28, 98–107 (2014). https://doi.org/10.1038/leu.2013.246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.246

Keywords

This article is cited by

Search

Quick links