Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The DNA damage response: putting checkpoints in perspective

Abstract

The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development. Organisms respond to chromosomal insults by activating a complex damage response pathway. This pathway regulates known responses such as cell-cycle arrest and apoptosis (programmed cell death), and has recently been shown to control additional processes including direct activation of DNA repair networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A contemporary view of the general outline of the DNA damage response signal-transduction pathway.
Figure 2: Organization of the mammalian DNA damage response pathway.
Figure 3: Interactions between the DNA damage response pathway and DNA repair networks.

Similar content being viewed by others

References

  1. George, J., Castellazzi, M. & Buttin, G. Prophage induction and cell division in E. coli. III. Mutations sfiA and sfiB restore division in tif and lon strains and permit the expression of mutator properties of tif. Mol. Gen. Genet. 140, 309– 332 ( 1975).

    CAS  PubMed  Google Scholar 

  2. Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: A new explanation. Proc. Natl Acad. Sci. USA 77, 7315– 7317 (1980).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weinert, T. A. & Hartwell, L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317– 322 ( 1988).

    ADS  CAS  PubMed  Google Scholar 

  4. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162– 1166 (1999).

    CAS  PubMed  Google Scholar 

  5. Lim, D. S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613– 617 (2000).

    ADS  CAS  PubMed  Google Scholar 

  6. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115– 119 (2000).

    CAS  PubMed  Google Scholar 

  7. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473– 477 (2000).

    ADS  CAS  PubMed  Google Scholar 

  8. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477 – 482 (2000).

    ADS  CAS  PubMed  Google Scholar 

  9. Martin, S. G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621– 633 (1999).

    CAS  PubMed  Google Scholar 

  10. Mills, K. D., Sinclair, D. A. & Guarente, L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609– 620 (1999).

    CAS  PubMed  Google Scholar 

  11. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664– 1672 ( 1996).

    ADS  CAS  PubMed  Google Scholar 

  12. Naito, T., Matsuura, A. & Ishikawa, F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nature Genet. 20, 203– 206 (1998).

    CAS  PubMed  Google Scholar 

  13. Ritchie, K. B., Mallory, J. C. & Petes, T. D. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6065– 6075 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847– 849 (1993).

    ADS  CAS  PubMed  Google Scholar 

  15. Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849– 852 (1993).

    ADS  CAS  PubMed  Google Scholar 

  16. Xu, Y. & Baltimore, D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10, 2401– 2410 (1996).

    CAS  PubMed  Google Scholar 

  17. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824– 1827 (2000).

    ADS  CAS  PubMed  Google Scholar 

  18. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397– 402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. de Klein, A. et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr. Biol. 10, 479– 482 (2000).

    CAS  PubMed  Google Scholar 

  20. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 14 , 1448– 1459 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Takai, H. et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev. 14, 1439– 1447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rotman, G. & Shiloh, Y. Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? BioEssays 19, 911– 917 (1997).

    CAS  PubMed  Google Scholar 

  23. Sun, Z., Hsiao, J., Fay, D. S. & Stern, D. F. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272– 274 ( 1998).

    ADS  CAS  PubMed  Google Scholar 

  24. Emili, A. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2, 183– 189. ( 1998).

    CAS  PubMed  Google Scholar 

  25. Vialard, J. E., Gilbert, C. S., Green, C. M. & Lowndes, N. F. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 17, 5678– 5688 ( 1998).

    Google Scholar 

  26. Sanchez, Y. et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166– 1171 (1999).

    CAS  PubMed  Google Scholar 

  27. Durocher, D., Henckel, J., Fersht, A. R. & Jackson, S. P. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4, 387– 394 ( 1999).

    CAS  PubMed  Google Scholar 

  28. Liao, H., Byeon, I. J. & Tsai, M. D. Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. J. Mol. Biol. 294, 1041– 1049 (1999).

    CAS  PubMed  Google Scholar 

  29. Wang, Z. Q. et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9, 509– 520 (1995).

    CAS  PubMed  Google Scholar 

  30. Jimenez, G. S. et al. DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 400, 81– 83 (1999).

    ADS  CAS  PubMed  Google Scholar 

  31. O'Connell, M. J., Walworth, N. C. & Carr, A. M. The G2-phase DNA damage checkpoint. Trends Cell Biol. 10, 296– 303 ( 2000).

    CAS  PubMed  Google Scholar 

  32. Volkmer, E. & Karnitz, L. M. Human homologs of Schizosaccharomyces pombe rad1, hus1, and rad9 form a DNA damage-responsive protein complex. J. Biol. Chem. 274, 567– 570 (1999).

    CAS  PubMed  Google Scholar 

  33. Weiss, R. S., Enoch, T. & Leder, P. Inactivation of mouse hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev. 14, 1886– 1898 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sugimoto, K., Ando, S., Shimomura, T. & Matsumoto, K. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol. Cell. Biol. 17, 5905– 5914 (1996).

    Google Scholar 

  35. Noskov, V. N., Araki, H. & Sugino, A. The RFC2 gene, encoding the third-largest subunit of the replication factor C complex, is required for an S-phase checkpoint in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 4914– 4923 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimomura, T., Ando, S., Matsumoto, K. & Sugimoto, K. Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways. Mol. Cell. Biol. 18, 5485– 5491 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shimada, M. et al. Replication factor C3 of Schizosaccharomyces pombe, a small subunit of replication factor C complex, plays a role in both replication and damage checkpoints. Mol. Biol. Cell 10, 3991– 4003 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Green, C. M., Erdjument-Bromage, H., Tempst, P. & Lowndes, N. F. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10, 39– 42 (2000).

    CAS  PubMed  Google Scholar 

  39. Edwards, R. J., Bentley, N. J. & Carr, A. M. A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nature Cell Biol. 1, 393– 398 (1999).

    CAS  PubMed  Google Scholar 

  40. Paciotti, V., Clerici, M., Lucchini, G. & Longhese, M. P. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev. 14, 2046– 2059 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rouse, J. & Jackson, S. P. LCD1: An essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J. 19, 5801– 5812 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389– 395 ( 1999).

    CAS  PubMed  Google Scholar 

  43. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927– 939 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gong, J. G. et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399, 806– 809 (1999).

    ADS  CAS  PubMed  Google Scholar 

  45. Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587– 597 (1992).

    CAS  PubMed  Google Scholar 

  46. Paules, R. S. et al. Defective G2 checkpoint function in cells from individuals with familial cancer syndromes. Cancer Res. 55, 1763– 1773 (1995).

    CAS  PubMed  Google Scholar 

  47. Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159– 169 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wright, J. A. et al. Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control. Proc. Natl Acad. Sci. USA 95, 7445– 7450 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, S. T., Lim, D. S., Canman, C. E. & Kastan, M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538 – 37543 (1999).

    CAS  PubMed  Google Scholar 

  50. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677– 1679 (1998).

    ADS  CAS  PubMed  Google Scholar 

  51. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674– 1677 (1998).

    ADS  CAS  PubMed  Google Scholar 

  52. Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152– 157 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. (in the press).

  54. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159– 171 ( 1996).

    CAS  PubMed  Google Scholar 

  55. Elson, A. et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl Acad. Sci. USA 93, 13084 – 13089 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956– 2970 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Khanna, K. K. et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nature Genet. 20, 398– 400 (1998).

    CAS  PubMed  Google Scholar 

  58. Chan, D. W. et al. Purification and characterization of ATM from human placenta. A manganese-dependent, wortmannin-sensitive serine/threonine protein kinase. J. Biol. Chem. 275, 7803– 7810 (2000).

    CAS  PubMed  Google Scholar 

  59. Smith, G. C. et al. Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc. Natl Acad. Sci. USA 96, 11134– 11139 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lakin, N. D., Hann, B. C. & Jackson, S. P. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18, 3989– 3995 (1999).

    CAS  PubMed  Google Scholar 

  61. Hall-Jackson, C. A., Cross, D. A., Morrice, N. & Smythe, C. ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18, 6707– 6713 (1999).

    CAS  PubMed  Google Scholar 

  62. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893– 1897 (1998).

    ADS  CAS  PubMed  Google Scholar 

  63. Blasina, A. et al. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol. 9, 1– 10 (1999).

    CAS  PubMed  Google Scholar 

  64. Brown, A. L. et al. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl Acad. Sci. USA 96, 3745– 3750 ( 1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chaturvedi, P. et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18, 4047– 4054 (1999).

    CAS  PubMed  Google Scholar 

  66. Zhou, B.-B. S. et al. Caffeine abolishes the mammalian G2/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J. Biol. Chem. 275, 10342– 10348 (2000).

    CAS  PubMed  Google Scholar 

  67. Matsuoka, S. et al. ATM phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389– 10394 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Melchionna, R., Chen, X., Blasina, A. & McGowan, C. H. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biol. 2, 762– 765 (2000).

    CAS  PubMed  Google Scholar 

  69. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278– 288 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289– 300 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chehab, N. H., Malikzay, A., Stavridi, E. S. & Halazonetis, T. D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 13777– 13782 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ashcroft, M., Kubbutat, M. H. & Vousden, K. H. Regulation of p53 function and stability by phosphorylation. Mol. Cell. Biol. 19, 1751– 1758 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Khosravi, R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 14973– 14977 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528– 2531 (1999).

    CAS  PubMed  Google Scholar 

  75. Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201– 204 (2000).

    ADS  CAS  PubMed  Google Scholar 

  76. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497– 1501 (1997).

    CAS  PubMed  Google Scholar 

  77. Walworth, N. C. & Bernards, R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353– 356 (1996).

    ADS  CAS  PubMed  Google Scholar 

  78. Nurse, P. Checkpoint pathways come of age. Cell 91, 865– 867 (1997).

    CAS  PubMed  Google Scholar 

  79. Morgan, D. O. Principles of CDK regulation. Nature 374, 131– 134 (1995).

    ADS  CAS  PubMed  Google Scholar 

  80. Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501– 1505 (1997).

    CAS  PubMed  Google Scholar 

  81. Dalal, S. N., Schweitzer, C. M., Gan, J. & DeCaprio, J. A. Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol. Cell. Biol. 19, 4465– 4479 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, J., Winkler, K., Yoshida, M. & Kornbluth, S. Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. EMBO J. 18, 2174 – 2183 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497– 1501 (1998).

    CAS  PubMed  Google Scholar 

  84. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3 Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616– 620 (1999).

    ADS  CAS  PubMed  Google Scholar 

  85. Jelinsky, S. A. & Samson, L. D. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl Acad. Sci. USA 96, 1486– 1491 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl Acad. Sci. USA 96, 424– 428 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42– 49 (2000).

    ADS  CAS  PubMed  Google Scholar 

  88. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477– 486 (1998).

    CAS  PubMed  Google Scholar 

  89. Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577– 587 ( 1999).

    CAS  PubMed  Google Scholar 

  90. Jeggo, P. A., Carr, A. M. & Lehmann, A. R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 14, 312– 316 (1998).

    CAS  PubMed  Google Scholar 

  91. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511– 518 (1999).

    CAS  PubMed  Google Scholar 

  92. Bashkirov, V. I., King, J. S., Bashkirova, E. V., Schmuckli-Maurer, J. & Heyer, W. D. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol. Cell. Biol. 20, 4393– 4404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Brush, G. S., Morrow, D. M., Hieter, P. & Kelly, T. J. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl Acad. Sci. USA 93, 15075– 15080 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lydall, D. & Weinert, T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270, 1488– 1491 (1995).

    ADS  CAS  PubMed  Google Scholar 

  95. Bochar, D. A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257– 265 (2000).

    CAS  PubMed  Google Scholar 

  96. Gasser, S. M. A sense of the end. Science 288, 1377– 1379 (2000).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Carr, D. Cortez, M. Mattern, M. Huang, L. Zou, M. Tetzlaff and T. Weinert for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Elledge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, BB., Elledge, S. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000). https://doi.org/10.1038/35044005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044005

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing