Skip to main content
Log in

Exosomes Derived from Irradiated Esophageal Carcinoma-Infiltrating T Cells Promote Metastasis by Inducing the Epithelial–Mesenchymal Transition in Esophageal Cancer Cells

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Exosomes are nanovesicles derived from tumor and normal cells that are detectable in human biological fluids, such as plasma, and cell culture supernatants. The function of exosome secretion from “normal” cells is unclear. Although numerous studies have investigated exosomes derived from hematopoietic cells, little is known regarding exosomes fromT cells, even though these cells play significant roles in innate and acquired immunity. A CCK-8 assay was used to examine the ability of exosomes to inhibit TE13 cell proliferation. In vitro invasion and wound healing assays were conducted to explore the effects of exosomes on TE13 cell migration and invasion. A Western blottinganalys is was performed to investigate the effects of exosomes on the expression of the EMT-related moleculesβ-catenin, NF-κB and snail. This study aimed to investigate the effects of exosomes from irradiated T cells on the human esophageal squamous cell carcinoma (ESCC) cell line TE13 and revealed that exosomes inhibit the proliferation but promote the metastasis of TE13 cells in a dose-and time-dependent manner. Furthermore, exosomes significantly increased the expression of β-catenin, NF-κB and snail in TE13 cells. The results of this study suggest an important role for T cell-derived exosomes in the progression of esophageal carcinoma: T cell-derived exosomes promote esophageal cancer metastasis, likely by promoting the EMT through the upregulation of β-catenin and the NF-κB/snail pathway. Moreover, this study supports the use of exosomes as a nearly perfect example of biomimetic nanovesicles that could be utilized in future therapeutic strategies against various diseases, including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu S, Yang CS, Li J, You W, Chen J, Cao Y, Dong Z, Qiao Y (2015) Cancer prevention research in China. Cancer Prev Res (Phila) 8:662–674. doi:10.1158/1940-6207.CAPR-14-0469

    Article  CAS  Google Scholar 

  2. D’Journo XB, Thomas PA (2014) Current management of esophageal cancer. J Thorac Dis 6(Suppl 2):S253–S264. doi:10.3978/j.issn.2072-1439.2014.04.16

    PubMed  PubMed Central  Google Scholar 

  3. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273. doi:10.1038/nrc2620

    Article  CAS  PubMed  Google Scholar 

  4. Chen X, Zhang H, Zhu H, Yang X, Yang Y, Yang Y, Min H, Chen G, Liu J, Lu J, Cheng H, Sun X (2016) Endostatin combined with radiotherapy suppresses vasculogenic mimicry formation through inhibition of epithelial-mesenchymal transition in esophageal cancer. Tumour Biol 37:4679–4688. doi:10.1007/s13277-015-4284-3

    Article  CAS  PubMed  Google Scholar 

  5. Ehrlich P (1909) Nederlandsch Tijdschrift voor Geneeskunde: Ueber den jetzigne Stand Der Karzinomforchung. Weekblad Jaargang Eerst helft 5:273

    Google Scholar 

  6. Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117. doi:10.1146/annurev.immunol.021908.132544

    Article  CAS  PubMed  Google Scholar 

  7. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi:10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  8. DemariaS NB, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870. doi:10.1016/j.ijrobp.2003.09.012

    Article  Google Scholar 

  9. Levy C, Chargari C, Marabellea P, Perfettini JL, Magné N, Deutsch E (2016) Can immunostimulatory agents enhance the abscopal effect of radiotherapy? Eur J Cancer 62:36–45. doi:10.1016/j.ejca.2016.03.067

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J (2011) CD4 (+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol 8:23–30. doi:10.1038/cmi.2010.59

    Article  PubMed  Google Scholar 

  11. Colombo M, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. doi:10.1146/annurev-cellbio-101512-122326

    Article  CAS  PubMed  Google Scholar 

  12. Tang XJ, Sun XY, Huang KM, Zhang L, Yang ZS, Zou DD, Wang B, Warnock GL, Dai LJ, Luo J (2015) Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget 6:44179–44190. doi:10.18632/oncotarget.6175

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pitt JM, Charrier M, Viaud S, André F, Besse B, Chaput N, Zitvogel L (2014) Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 193:1006–1011. doi:10.4049/jimmunol.1400703

    Article  CAS  PubMed  Google Scholar 

  14. Näslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S (2013) Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol 190:2712–2719. doi:10.4049/jimmunol.1203082

    Article  PubMed  Google Scholar 

  15. Liu H, Gao W, Yuan J, Wu C, Yao K, Zhang L, Ma L, Zhu J, Zou Y, Ge J (2016) Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction. J Mol Cell Cardiol 91:123–133. doi:10.1016/j.yjmcc.2015.12.028

    Article  CAS  PubMed  Google Scholar 

  16. Zitvogel R, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600. doi:10.1038/nm0598-594

    Article  CAS  PubMed  Google Scholar 

  17. Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL (2012) Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 1:1074–1083. doi:10.4161/onci.20897

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ, Camphausen KA (2013) Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol 6:638–IN6. doi:10.1593/tlo.13640

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, Terrian DM (2008) Senescence-associated exosome release from human prostate cancer cells. Cancer Res 68:7864–7871. doi:10.1158/0008-5472.CAN-07-6538

    Article  CAS  PubMed  Google Scholar 

  20. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. doi:10.1172/JCI39104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qin Y, Zhao D, Zhou HG, Wang XH, Zhong WL, Chen S, Gu WG, Wang W, Zhang CH, Liu YR, Liu HJ, Zhang Q, Guo YQ, Sun T, Yang C (2016) Apigenin inhibits NF-κB and snail signaling, EMT and metastasis in human hepatocellular carcinoma. Oncotarget. doi:10.18632/oncotarget.9404

    Google Scholar 

  22. Lamb R, Ablett MP, Spence K, Landberg G, Sims AH, Clarke RB (2013) Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One 8:e67811. doi:10.1371/journal.pone.0067811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. MAX (2016) YANW, DAIZ, GAOX, MAYet al.Baicalein suppresses metastasis of breast cancer cells by inhibiting eMT via downregulation of saTB1 and Wnt/β-catenin pathway. Drug Des Dev Ther 10:1419–1441. doi:10.2147/DDDT.S102541

    Google Scholar 

  24. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113:3365–3374

    CAS  PubMed  Google Scholar 

  25. Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X, Wang J (2012) Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol 188:5954–5961. doi:10.4049/jimmunol.1103466

    Article  CAS  PubMed  Google Scholar 

  26. Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K (2013) Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteome 80:171–182. doi:10.1016/j.jprot.2012.12.029

    Article  CAS  Google Scholar 

  27. Raimondo F, Morosi L, Chinello C, Magni F, Pitto M (2011) Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 11:709–720. doi:10.1002/pmic.201000422

    Article  CAS  PubMed  Google Scholar 

  28. Yu S, Cao H, Shen B, Feng J (2015) Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget 6:37151–37168. doi:10.18632/oncotarget.6022

    Article  PubMed  PubMed Central  Google Scholar 

  29. Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S (2002) Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162. doi:10.1038/ni854

    Article  PubMed  Google Scholar 

  30. Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq JB, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:1

    Article  Google Scholar 

  32. Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L (2016) Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 126:1224–1232. doi:10.1172/JCI81137

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peters PJ, Borst J, Oorschot V, Fukuda M, Krähenbühl O, Tschopp J, Slot JW, Geuze HJ (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 173:1099–1109. doi:10.1084/jem.173.5.1099

    Article  CAS  PubMed  Google Scholar 

  34. Zagury D, Bernard J, Thierness N, Feldman M, Berke G (1975) Isolation and characterization of individual functionally reactive cytotoxic T lymphocytes: conjugation, killing and recycling at the single cell level. Eur J Immunol 5:818–822. doi:10.1002/eji.1830051205

    Article  Google Scholar 

  35. Peters PJ, Geuze HJ, Van der Donk HA, Slot JW, Griffith JM, Stam NJ, Clevers HC, Borst J (1989) Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol 19:1469–1475. doi:10.1002/eji.1830190819

    Article  CAS  PubMed  Google Scholar 

  36. Young JD, Nathan CF, Podack ER, Palladino MA, Cohn ZA (1986) Functional channel formation associated with cytotoxic T-cell granules. Proc Natl Acad Sci U S A 83:150–154. doi:10.1073/pnas.83.1.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Young JD, Cohn ZA (1987) Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol 41:269–332. doi:10.1016/S0065-2776(08)60033-4

    Article  CAS  PubMed  Google Scholar 

  38. Henkart PA, Millard PJ, Reynolds CW, Henkart MP (1984) Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J Exp Med 160:75–93. doi:10.1084/jem.160.1.75

    Article  CAS  PubMed  Google Scholar 

  39. Podack ER, Konigsberg PJ (1984) Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J Exp Med 160:695–710

    Article  CAS  PubMed  Google Scholar 

  40. van Zijl F, Mall S, Machat G, Pirker C, Zeillinger R, Weinhaeusel A, Bilban M, Berger W, Mikulits W (2011) A human model of epithelial to mesenchymal transition to monitor drug efficacy in hepatocellular carcinoma progression. Mol Cancer Ther 10:850–860. doi:10.1158/1535-7163.MCT-10-0917

    Article  PubMed  Google Scholar 

  41. Tiwari N, Tatari M, Christofori G (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 22:194–207. doi:10.1016/j.semcancer.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  42. Kumar S, Das A, Sen S (2014) Extracellular matrix density promotes EMT by weakening cell-cell adhesions. Mol BioSyst 10:838–850. doi:10.1039/c3mb70431a

    Article  CAS  PubMed  Google Scholar 

  43. Sun T, Sun BC, Zhao XL, Zhao N, Dong XY, Che N, Yao Z, Ma YM, Gu Q, Zong WK, Liu ZY (2011) Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology 54:1690–1706. doi:10.1002/hep.24543

    Article  CAS  PubMed  Google Scholar 

  44. Baranwal S, Alahari SK (2009) Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun 384:6–11. doi:10.1016/j.bbrc.2009.04.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX, Sun BC (2010) Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 51:545–556. doi:10.1002/hep.23311

    Article  CAS  PubMed  Google Scholar 

  46. Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9:317–321. doi:10.1016/0168-9525(93)90250-L

    Article  CAS  PubMed  Google Scholar 

  47. Bienz M (2005) β-catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15:R64–R67. doi:10.1016/j.cub.2004.12.058

    Article  CAS  PubMed  Google Scholar 

  48. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, Fearon ER, Weiss SJ (2006) A Wnt-Axin2-GSK3beta cascade regulates snail1 activity in breast cancer cells. Nat Cell Biol 8:1398–1406. doi:10.1038/ncb1508

    Article  CAS  PubMed  Google Scholar 

  49. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182. doi:10.1038/nature14581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang C, Robbins PD (2011) The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol 2011:842849. doi:10.1155/2011/842849

    PubMed  PubMed Central  Google Scholar 

  51. Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318. doi:10.4049/jimmunol.166.12.7309

    Article  PubMed  Google Scholar 

  52. Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Möbius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278:10963–10972. doi:10.1074/jbc.M207550200

    Article  CAS  PubMed  Google Scholar 

  53. Van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M (2001) Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterol 121:337–349. doi:10.1053/gast.2001.26263

    Article  CAS  Google Scholar 

  54. Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31:114–121. doi:10.1165/rcmb.2003-0238OC

    Article  CAS  PubMed  Google Scholar 

  55. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373. doi:10.1073/pnas.0403453101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9:4997–5000. doi:10.1002/pmic.200900351

    Article  CAS  PubMed  Google Scholar 

  57. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450. doi:10.1371/journal.pbio.1001450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bosque A, Dietz L, Gallego-Lleyda A, Sanclemente M, Iturralde M, Naval J, Alava MA, Martínez-Lostao L, Thierse H, Anel A (2016) Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein. Oncotarget 7:29287–29305. doi:10.18632/oncotarget.8678

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchen Sun.

Additional information

Hua Min, Xiangdong Sun and Xi Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, H., Sun, X., Yang, X. et al. Exosomes Derived from Irradiated Esophageal Carcinoma-Infiltrating T Cells Promote Metastasis by Inducing the Epithelial–Mesenchymal Transition in Esophageal Cancer Cells. Pathol. Oncol. Res. 24, 11–18 (2018). https://doi.org/10.1007/s12253-016-0185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0185-z

Keywords

Navigation