Skip to main content
Log in

microRNAs at the regulatory frontier: an investigation into how microRNAs impact the development and effector functions of CD4 T cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

CD4 T cells are an integral part of adaptive immunity. microRNAs have been identified as fundamental regulators of post-transcriptional programs and to play roles in T lymphocytes’ development, differentiation, and effector functions. To better understand the role of miRNAs in T cells and to identify potential therapeutic tools and targets, we have undertaken studies of miRNAs that modulate or are modulated by T-cell receptor signaling. We identified miR-181a as a key regulator of TCR signaling strength, and hence T-cell development, and the miR-17-92 cluster as an important player in CD4 T cells’ response against antigens. These discoveries, coupled with work by other researchers, reveal the power and importance of miRNA-mediated regulation in T-cell responses and offer new insights into the burgeoning field of immunoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis MM, et al. T cells as a self-referential, sensory organ. Annu Rev Immunol. 2007;25:681–95.

    Article  PubMed  CAS  Google Scholar 

  2. Kane LP, Lin J, Weiss A. Signal transduction by the TCR for antigen. Curr Opin Immunol. 2000;12:242–9.

    Article  PubMed  CAS  Google Scholar 

  3. Vang T, et al. Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol. 2008;26:29–55.

    Article  PubMed  CAS  Google Scholar 

  4. Samelson, L.E.: Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol 2002; 20: 371-394.

    Google Scholar 

  5. Shaw AS, Filbert EL. Scaffold proteins and immune-cell signalling. Nat Rev Immunol. 2009;9:47–56.

    Article  PubMed  CAS  Google Scholar 

  6. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

    Article  PubMed  CAS  Google Scholar 

  7. Chen CZ, Li L, Lodish HF, Bartel DP. microRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  PubMed  CAS  Google Scholar 

  8. Li QJ, et al. miR-181a Is an Intrinsic Modulator of T Cell Sensitivity and Selection. Cell. 2007;129:147–61.

    Article  PubMed  CAS  Google Scholar 

  9. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD. microRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9:839–45.

    Article  PubMed  CAS  Google Scholar 

  10. Matsui K, Boniface JJ, Steffner P, Reay PA, Davis MM. Kinetics of T-cell receptor binding to peptide/I-Ek complexes: correlation of the dissociation rate with T-cell responsiveness. Proc Natl Acad Sci USA. 1994;91:12862–6.

    Article  PubMed  CAS  Google Scholar 

  11. Davis MM, et al. Ligand recognition by alpha beta T cell receptors. Annu Rev Immunol. 1998;16:523–44.

    Article  PubMed  CAS  Google Scholar 

  12. Holler PD, Kranz DM. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity. 2003;18:255–64.

    Article  PubMed  CAS  Google Scholar 

  13. Holler PD, Kranz DM. T cell receptors: affinities, cross-reactivities, and a conformer model. Mol Immunol. 2004;40:1027–31.

    Article  PubMed  CAS  Google Scholar 

  14. Evavold BD, Allen PM. Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science. 1991;252:1308–10.

    Article  PubMed  CAS  Google Scholar 

  15. Evavold BD, Sloan-Lancaster J, Allen PM. Antagonism of superantigen-stimulated helper T-cell clones and hybridomas by altered peptide ligand. Proc Natl Acad Sci USA. 1994;91:2300–4.

    Article  PubMed  CAS  Google Scholar 

  16. Krogsgaard M, et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature. 2005;434:238–43.

    Article  PubMed  CAS  Google Scholar 

  17. Pircher H, Rohrer UH, Moskophidis D, Zinkernagel RM, Hengartner H. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Nature. 1991;351:482–5.

    Article  PubMed  CAS  Google Scholar 

  18. Davey GM, et al. Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J Exp Med. 1998;188:1867–74.

    Article  PubMed  CAS  Google Scholar 

  19. Lucas B, Stefanova I, Yasutomo K, Dautigny N, Germain RN. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity. 1999;10:367–76.

    Article  PubMed  CAS  Google Scholar 

  20. Curtsinger JM, Lins DC, Mescher MF. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C-) to TCR/CD8 signaling in response to antigen. J Immunol. 1998;160:3236–43.

    PubMed  CAS  Google Scholar 

  21. Hogquist KA, et al. T cell receptor antagonist peptides induce positive selection. Cell. 1994;76:17–27.

    Article  PubMed  CAS  Google Scholar 

  22. Kao H, Allen PM. An antagonist peptide mediates positive selection and CD4 lineage commitment of MHC class II-restricted T cells in the absence of CD4. J Exp Med. 2005;201:149–58.

    Article  PubMed  CAS  Google Scholar 

  23. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. 2002;419:845–9.

    Article  PubMed  CAS  Google Scholar 

  24. Li QJ, et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol. 2004;5:791–9.

    Article  PubMed  CAS  Google Scholar 

  25. Purbhoo MA, Irvine DJ, Huppa JB, Davis MM. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. 2004;5:524–30.

    Article  PubMed  CAS  Google Scholar 

  26. Ebert PJ, Ehrlich LI, Davis MM. Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity. 2008;29:734–45.

    Article  PubMed  CAS  Google Scholar 

  27. Tarakhovsky A, et al. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science. 1995;269:535–7.

    Article  PubMed  CAS  Google Scholar 

  28. Starr TK, Daniels MA, Lucido MM, Jameson SC, Hogquist KA. Thymocyte sensitivity and supramolecular activation cluster formation are developmentally regulated: a partial role for sialylation. J Immunol. 2003;171:4512–20.

    PubMed  CAS  Google Scholar 

  29. Zikherman J, et al. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity. 2010;32:342–54.

    Article  PubMed  CAS  Google Scholar 

  30. Wu J, et al. Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem. 2006;281:11002–10.

    Article  PubMed  CAS  Google Scholar 

  31. Zikherman J, et al. PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J Immunol. 2009;182:4093–106.

    Article  PubMed  CAS  Google Scholar 

  32. Koelsch U, Schraven B, Simeoni L. SIT and TRIM determine T cell fate in the thymus. J Immunol. 2008;181:5930–9.

    PubMed  CAS  Google Scholar 

  33. Theodosiou, A. & Ashworth, A.: MAP kinase phosphatases. Genome Biol 2002; 3: REVIEWS3009.

  34. Ebert, P.J., Jiang, S., Xie, J., Li, Q.J. & Davis, M.M.: An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat Immunol 2009.

  35. Liu G, Min H, Yue S, Chen CZ. Pre-miRNA loop nucleotides control the distinct activities of mir-181a–1, mir-181c in early T cell development. PLoS One. 2008;3:e3592.

    Article  PubMed  Google Scholar 

  36. Yamasaki S, et al. Mechanistic basis of pre-T cell receptor-mediated autonomous signaling critical for thymocyte development. Nat Immunol. 2006;7:67–75.

    Article  PubMed  CAS  Google Scholar 

  37. Stefanski HE, Mayerova D, Jameson SC, Hogquist KA. A low affinity TCR ligand restores positive selection of CD8+ T cells in vivo. J Immunol. 2001;166:6602–7.

    PubMed  CAS  Google Scholar 

  38. Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5:772–82.

    Article  PubMed  CAS  Google Scholar 

  39. Reddy J, et al. Detection of autoreactive myelin proteolipid protein 139–151-specific T cells by using MHC II (IAs) tetramers. J Immunol. 2003;170:870–7.

    PubMed  CAS  Google Scholar 

  40. Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW. Autoreactive T cells in healthy individuals. J Immunol. 2004;172:5967–72.

    PubMed  CAS  Google Scholar 

  41. Goodnow, C.C.: Multistep pathogenesis of autoimmune disease. Cell 2007; 130: 25-35.

    Google Scholar 

  42. Bielekova B, et al. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol. 2004;172:3893–904.

    PubMed  CAS  Google Scholar 

  43. Amrani A, et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature. 2000;406:739–42.

    Article  PubMed  CAS  Google Scholar 

  44. Savage PA, Boniface JJ, Davis MM. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity. 1999;10:485–92.

    Article  PubMed  CAS  Google Scholar 

  45. Tian J, Gregori S, Adorini L, Kaufman DL. The frequency of high avidity T cells determines the hierarchy of determinant spreading. J Immunol. 2001;166:7144–50.

    PubMed  CAS  Google Scholar 

  46. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171–92.

    Article  PubMed  CAS  Google Scholar 

  47. van Leeuwen EM, Sprent J, Surh CD. Generation and maintenance of memory CD4(+) T Cells. Curr Opin Immunol. 2009;21:167–72.

    Article  PubMed  Google Scholar 

  48. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89.

    Article  PubMed  CAS  Google Scholar 

  49. Curtale G, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood. 2010;115:265–73.

    Article  PubMed  CAS  Google Scholar 

  50. Lu LF, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142:914–29.

    Article  PubMed  CAS  Google Scholar 

  51. Niimoto T, et al. microRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet Disord. 2010;11:209.

    Article  PubMed  Google Scholar 

  52. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA. 2007;104:7080–5.

    Article  PubMed  CAS  Google Scholar 

  53. Almanza G, et al. Selected microRNAs define cell fate determination of murine central memory CD8 T cells. PLoS One. 2010;5:e11243.

    Article  PubMed  Google Scholar 

  54. Rodriguez A, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608–11.

    Article  PubMed  CAS  Google Scholar 

  55. Thai TH, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316:604–8.

    Article  PubMed  CAS  Google Scholar 

  56. Marson A, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007;445:931–5.

    Article  PubMed  CAS  Google Scholar 

  57. Zheng Y, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007;445:936–40.

    Article  PubMed  CAS  Google Scholar 

  58. Lu LF, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 2009;30:80–91.

    Article  PubMed  CAS  Google Scholar 

  59. Kohlhaas S, et al. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol. 2009;182:2578–82.

    Article  PubMed  CAS  Google Scholar 

  60. Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. 2004;339:327–35.

    Article  PubMed  CAS  Google Scholar 

  61. Ota A, et al. EIdentification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res. 2004;64:3087–95.

    Article  PubMed  CAS  Google Scholar 

  62. He L, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  PubMed  CAS  Google Scholar 

  63. Ventura A, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:875–86.

    Article  PubMed  CAS  Google Scholar 

  64. Xiao C, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat Immunol. 2008;9:405–14.

    Article  PubMed  CAS  Google Scholar 

  65. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;127:759–67.

    PubMed  CAS  Google Scholar 

  66. Olive V, Jiang I, He L. Mir-17–92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol. 2010;42:1348–54.

    Article  PubMed  CAS  Google Scholar 

  67. Castellano L, et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA. 2009;106:15732–7.

    Article  PubMed  CAS  Google Scholar 

  68. Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev. 2009;130:731–41.

    Article  PubMed  CAS  Google Scholar 

  69. Yan HL, et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 2009;28:2719–32.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Y, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39:133–44.

    Article  PubMed  CAS  Google Scholar 

  71. Baek, D. et al.: The impact of microRNAs on protein output. Nature 2008.

  72. Selbach, M. et al.: Widespread changes in protein synthesis induced by microRNAs. Nature 2008.

  73. Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009;460:479–86.

    PubMed  CAS  Google Scholar 

  74. Krutzfeldt J, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  75. Thum, T. et al.: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008.

  76. Kota J, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Jing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lykken, E.A., Li, QJ. microRNAs at the regulatory frontier: an investigation into how microRNAs impact the development and effector functions of CD4 T cells. Immunol Res 49, 87–96 (2011). https://doi.org/10.1007/s12026-010-8196-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-010-8196-4

Keywords

Navigation