Skip to main content

Advertisement

Log in

Hypoxia, angiogenesis, and lung cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Lung cancer is responsible for more deaths than any other cancer in America. As a result, novel ways to treat it are needed to improve patient outcomes. A tumor must form new blood vessels to grow and metastasize to distant sites; this angiogenesis is mediated by factors such as vascular endothelial growth factor (VEGF). Because it increases VEGF levels, hypoxia has been thought to be a primary trigger of angiogenesis. Tumor hypoxia and higher levels of serum markers of angiogenesis have been associated with poor prognosis in non-small cell lung cancer (NSCLC). In recent years, antiangiogenic compounds have been developed and tested in various solid malignancies, including NSCLC, for which bevacizumab, a monoclonal antibody against VEGF, was recently approved. Combinations of antiangiogenic drugs and conventional cytotoxic chemotherapy are currently under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ries LA, Melbert D, Krapcho M, et al.: (2007) SEER Cancer Statistics Review, 1975–2004. Bethesda: National Cancer Institute; 2007. http://seer.cancer.gov/csr/1975_2004/.

    Google Scholar 

  2. Herbst RS, O’Neill VJ, Fehrenbacher L, et al.: Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J Clin Oncol 2007, 25:4743–4750.

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995, 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  4. Stinchcombe TE, Socinski MA: Bevacizumab in the treatment of non-small-cell lung cancer. Oncogene 2007, 26:3691–3698.

    Article  PubMed  CAS  Google Scholar 

  5. Thomlinson RH, Gray LH: The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955, 9:539–549.

    PubMed  CAS  Google Scholar 

  6. Brown JM: The hypoxic cell: a target for selective cancer therapy: eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999, 59:5863–5870.

    PubMed  CAS  Google Scholar 

  7. Herbst RS, Onn A, Sandler A: Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 2005, 23:3243–3256.

    Article  PubMed  CAS  Google Scholar 

  8. Passalidou E, Trivella M, Singh N, et al.: Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas. Br J Cancer 2002, 86:244–249.

    Article  PubMed  CAS  Google Scholar 

  9. Moeller BJ, Richardson RA, Dewhirst MW: Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev 2007, 26:241–248.

    Article  PubMed  CAS  Google Scholar 

  10. Sun S, Schiller JH: Angiogenesis inhibitors in the treatment of lung cancer. Crit Rev Oncol Hematol 2007, 62:93–104.

    Article  PubMed  Google Scholar 

  11. Gridelli C, Rossi A, Maione P: New antiangiogenetic agents and non-small cell lung cancer. Crit Rev Oncol Hematol 2006, 60:76–86.

    Article  PubMed  CAS  Google Scholar 

  12. Giaccone G: The potential of antiangiogenic therapy in non-small cell lung cancer. Clin Cancer Res 2007, 13:1961–1970.

    Article  PubMed  CAS  Google Scholar 

  13. Le QT, Chen E, Salim A, et al.: An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res 2006, 12:1507–1514.

    Article  PubMed  CAS  Google Scholar 

  14. Bremnes RM, Camps C, Sirera R: Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer 2006, 51:143–158.

    Article  PubMed  Google Scholar 

  15. Keedy VL, Sandler AB: Inhibition of angiogenesis in the treatment of non-small cell lung cancer. Cancer Sci 2007, 98:1825–1830.

    Article  PubMed  CAS  Google Scholar 

  16. Boldrini L, Gisfredi S, Ursino S, et al.: Expression of endothelin-1 is related to poor prognosis in non-small cell lung carcinoma. Eur J Cancer 2005, 41:2828–2835.

    Article  PubMed  CAS  Google Scholar 

  17. Kim SJ, Rabbani ZN, Dewhirst MW, et al.: Expression of HIF-1alpha, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer 2005, 49:325–335.

    Article  PubMed  Google Scholar 

  18. Moon EJ, Brizel DM, Chi JT, Dewhirst MW: The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 2007, 9:1237–1294.

    Article  PubMed  CAS  Google Scholar 

  19. Kietzmann T, Roth U, Jungermann K: Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood 1999, 94:4177–4185.

    PubMed  CAS  Google Scholar 

  20. Bajou K, Masson V, Gerard RD, et al.: The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 2001, 152:777–784.

    Article  PubMed  CAS  Google Scholar 

  21. Rittling SR, Chambers AF: Role of osteopontin in tumour progression. Br J Cancer 2004, 90:1877–1881.

    Article  PubMed  CAS  Google Scholar 

  22. Petrik D, Lavori PW, Cao H, et al.: Plasma osteopontin is an independent prognostic marker for head and neck cancers. J Clin Oncol 2006, 24:5291–5297.

    Article  PubMed  CAS  Google Scholar 

  23. Chang YS, Kim HJ, Chang J, et al.: Elevated circulating level of osteopontin is associated with advanced disease state of non-small cell lung cancer. Lung Cancer 2007, 57:373–380.

    Article  PubMed  Google Scholar 

  24. Donati V, Boldrini L, Dell’Omodarme M, et al.: Osteopontin expression and prognostic significance in non-small cell lung cancer. Clin Cancer Res 2005, 11:6459–6465.

    Article  PubMed  CAS  Google Scholar 

  25. Boldrini L, Donati V, Dell’Omodarme M, et al.: Prognostic significance of osteopontin expression in early-stage non-small-cell lung cancer. Br J Cancer 2005, 93:453–457.

    Article  PubMed  CAS  Google Scholar 

  26. Tamura M, Oda M, Matsumoto I, et al.: The combination assay with circulating vascular endothelial growth factor (VEGF)-C, matrix metalloproteinase-9, and VEGF for diagnosing lymph node metastasis in patients with non-small cell lung cancer. Ann Surg Oncol 2004, 11:928–933.

    Article  PubMed  Google Scholar 

  27. Volm M, Koomagi R, Mattern J: PD-ECGF, bFGF, and VEGF expression in non-small cell lung carcinomas and their association with lymph node metastasis. Anticancer Res 1999, 19:651–655.

    PubMed  CAS  Google Scholar 

  28. Johnson DH, Fehrenbacher L, Novotny WF, et al.: Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004, 22:2184–2191.

    Article  PubMed  CAS  Google Scholar 

  29. Sandler A, Gray R, Perry MC, et al.: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006, 355:2542–2550.

    Article  PubMed  CAS  Google Scholar 

  30. Gridelli C, Maione P, Rossi A, De Marinis F: The role of bevacizumab in the treatment of non-small cell lung cancer: current indications and future developments. Oncologist 2007, 12:1183–1193.

    Article  PubMed  CAS  Google Scholar 

  31. Gridelli C, Maione P, Del Gaizo F, et al.: Sorafenib and sunitinib in the treatment of advanced non-small cell lung cancer. Oncologist 2007, 12:191–200.

    Article  PubMed  CAS  Google Scholar 

  32. Liu B, Barrett T, Choyke P, et al.: A phase II study of BAY 43-9006 (sorafenib) in patients with relapsed non-small cell lung cancer (NSCLC) [ASCO abstract 17119]. J Clin Oncol 2006, 24(18S):17119.

    Google Scholar 

  33. Gatzemeier U, Blumenschein G, Fosella F, et al.: Phase II trial of single-agent sorafenib in patients with advanced non-small cell lung carcinoma [ASCO abstract 7002]. 2006, 24(18S):7002.

    Google Scholar 

  34. Cabebe E, Wakelee H: Role of anti-angiogenesis agents in treating NSCLC: focus on bevacizumab and VEGFR tyrosine kinase inhibitors. Curr Treat Options Oncol 2007, 8:15–27.

    Article  PubMed  Google Scholar 

  35. Socinski MA, Novello S, Sanchez JM: Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): preliminary results of a multicenter phase II trial [ASCO abstract 7542]. J Clin Oncol 2007, 25(18S):7542.

    Google Scholar 

  36. Herbst RS, Johnson DH, Mininberg E, et al.: Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005, 23:2544–2555.

    Article  PubMed  CAS  Google Scholar 

  37. Gridelli C, Rossi A, Mongillo F, et al.: A randomized phase II study of sorafenib/gemcitabine or sorafenib/erlotinib for advanced non-small-cell lung cancer in elderly patients or patients with a performance status of 2: treatment rationale and protocol dynamics. Clin Lung Cancer 2007, 8:396–398.

    Article  PubMed  Google Scholar 

  38. Altorki NK, Keresztes RS, Port JL, et al.: Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol 2003, 21:2645–2650.

    Article  PubMed  CAS  Google Scholar 

  39. Brown JR, DuBois RN: Cyclooxygenase as a target in lung cancer. Clin Cancer Res 2004, 10(Pt 2):4266S–4269S.

    Article  PubMed  CAS  Google Scholar 

  40. Lilenbaum R, Socinski LA, Altorki NK, et al.: Randomized phase II trial of docetaxel/irinotecan and gemcitabine/irinotecan with or without celecoxib in the second-line treatment of non-small-cell lung cancer. J Clin Oncol 2006, 24:4825–4832.

    Article  PubMed  CAS  Google Scholar 

  41. Heymach JV, Johnson BE, Prager D, et al.: Randomized, placebo-controlled phase II study of vandetanib plus docetaxel in previously treated non small-cell lung cancer. J Clin Oncol 2007, 25:4270–4277.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit K. Goudar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goudar, R.K., Vlahovic, G. Hypoxia, angiogenesis, and lung cancer. Curr Oncol Rep 10, 277–282 (2008). https://doi.org/10.1007/s11912-008-0043-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-008-0043-6

Keywords

Navigation