Skip to main content
Log in

Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs), a new class of RNAs with no protein-coding potential, have been reported to have crucial roles in the regulation of a variety of tumors. However, the functions and molecular mechanisms of lncRNAs to osteosarcoma are still largely unknown. The purpose of this study is to examine the expression, functions and molecular mechanisms of a new lncRNA FGFR3 antisense transcript 1 (FGFR3-AS1) in osteosarcoma. The expression of FGFR3-AS1 was examined by real-time quantitative PCR. The regulation of FGFR3 by FGFR3-AS1 was examined by RNase protection assay, real-time quantitative PCR, western blotting, and luciferase reporter assay. The effects of FGFR3-AS1 on osteosarcoma cell proliferation and cell cycle were determined by Cell Counting Kit-8, Ethynyl deoxyuridine incorporation assay and flow cytometry. FGFR3-AS1 was upregulated in osteosarcoma. Increased FGFR3-AS1 expression correlates with large tumor size, advanced Enneking stage, metastasis and poor survival. Through antisense pairing with FGFR3 3′UTR, FGFR3-AS1 increases FGFR3 mRNA stability and upregulates FGFR3 expression. The expression of FGFR3-AS1 and FGFR3 is positively correlated in osteosarcoma tissues. Knockdown of FGFR3-AS1 inhibits the proliferation and cell cycle progression of osteosarcoma cells in vitro. Moreover, knockdown of FGFR3-AS1 inhibits xenograft tumor growth of osteosarcoma cells in vivo. These data demonstrate the mechanisms of how antisense noncoding RNA regulate the expression of sense genes, and show the pivotal functions of FGFR3-AS1 in osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moriarity BS, Otto GM, Rahrmann EP, Rathe SK, Wolf NK, Weg MT et al (2015) A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet 47(6):615–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu Y, Hu B, Guan GF, Chen J, Wang CQ, Ma Q et al (2015) SDF-1/CXCR4 promotes F5M2 osteosarcoma cell migration by activating the Wnt/beta-catenin signaling pathway. Med Oncol 32(7):194

    Article  PubMed  Google Scholar 

  3. Allison DC, Carney SC, Ahlmann ER, Hendifar A, Chawla S, Fedenko A et al (2012) A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma 2012:704872

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jaffe N, Puri A, Gelderblom H (2013) Osteosarcoma: evolution of treatment paradigms. Sarcoma 2013:203531

    Article  PubMed  PubMed Central  Google Scholar 

  5. El-Naggar AM, Veinotte CJ, Cheng H, Grunewald TG, Negri GL, Somasekharan SP et al (2015) Translational activation of HIF1alpha by YB-1 promotes sarcoma metastasis. Cancer Cell 27(5):682–697

    Article  CAS  PubMed  Google Scholar 

  6. Overholtzer M, Rao PH, Favis R, Lu XY, Elowitz MB, Barany F et al (2003) The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc Natl Acad Sci USA. 100(20):11547–11552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yuan J, Lang J, Liu C, Zhou K, Chen L, Liu Y (2015) The expression and function of miRNA-451 in osteosarcoma. Med Oncol 32(1):324. doi:10.1007/s12032-014-0324-x

    Article  PubMed  Google Scholar 

  8. Kansara M, Teng MW, Smyth MJ, Thomas DM (2014) Translational biology of osteosarcoma. Nat Rev Cancer 14(11):722–735

    Article  CAS  PubMed  Google Scholar 

  9. Sadikovic B, Yoshimoto M, Chilton-MacNeill S, Thorner P, Squire JA, Zielenska M (2009) Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Hum Mol Genet 18(11):1962–1975

    Article  CAS  PubMed  Google Scholar 

  10. Meazza C, Scanagatta P, Luksch R, Massimino M (2015) How far can we go with surgery in metastatic osteosarcoma patients? Med Oncol 32(9):668

    Article  Google Scholar 

  11. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    Article  CAS  PubMed  Google Scholar 

  12. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493(7431):231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muers M (2011) RNA: genome-wide views of long non-coding RNAs. Nat Rev Genet 12(11):742

    Article  CAS  PubMed  Google Scholar 

  14. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    Article  CAS  PubMed  Google Scholar 

  15. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152(3):570–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521(7551):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF et al (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25(5):666–681

    Article  CAS  PubMed  Google Scholar 

  18. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X et al (2015) A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27(3):370–381

    Article  CAS  PubMed  Google Scholar 

  19. Sun Q, Liu H, Li L, Zhang S, Liu K, Liu Y et al (2015) Long noncoding RNA-LET, which is repressed by EZH2, inhibits cell proliferation and induces apoptosis of nasopharyngeal carcinoma cell. Med Oncol 32(9):673

    Article  Google Scholar 

  20. Lin X, Yang M, Xia T, Guo J (2014) Increased expression of long noncoding RNA ABHD11-AS1 in gastric cancer and its clinical significance. Med Oncol 31(7):42

    Article  PubMed  Google Scholar 

  21. Wang F, Yuan JH, Wang SB, Yang F, Yuan SX, Ye C et al (2014) Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2. Hepatology 60(4):1278–1290

    Article  CAS  PubMed  Google Scholar 

  22. Yang M, Zhai X, Xia B, Wang Y, Lou G (2015) Long noncoding RNA CCHE1 promotes cervical cancer cell proliferation via upregulating PCNA. Tumour Biol. doi:10.1007/s13277-015-3465-4

    Google Scholar 

  23. Yin D, He X, Zhang E, Kong R, De W, Zhang Z (2014) Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med Oncol 31(11):253

    Article  PubMed  Google Scholar 

  24. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM et al (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132(1):330–342

    Article  CAS  PubMed  Google Scholar 

  25. Peng W, Gao W, Feng J (2014) Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. Med Oncol 31(12):346

    Article  PubMed  Google Scholar 

  26. Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X (2015) MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3 K/Akt pathway. Tumour Biol 36(3):1477–1486

    Article  CAS  PubMed  Google Scholar 

  27. Li JP, Liu LH, Li J, Chen Y, Jiang XW, Ouyang YR et al (2013) Microarray expression profile of long noncoding RNAs in human osteosarcoma. Biochem Biophys Res Commun 433(2):200–206

    Article  CAS  PubMed  Google Scholar 

  28. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491(7424):454–457

    Article  CAS  PubMed  Google Scholar 

  29. Mahmoudi S, Henriksson S, Corcoran M, Mendez-Vidal C, Wiman KG, Farnebo M (2009) Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33(4):462–471

    Article  CAS  PubMed  Google Scholar 

  30. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE et al (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14(7):723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bi Y, Jing Y, Cao Y (2015) Overexpression of miR-100 inhibits growth of osteosarcoma through FGFR3. Tumour Biol. doi:10.1007/s13277-015-3581-1

    Google Scholar 

  32. Wang Y, Yao J, Meng H, Yu Z, Wang Z, Yuan X et al (2015) A novel long non-coding RNA, hypoxia-inducible factor-2alpha promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro. Mol Med Rep. 11(4):2534–2540

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun XH, Yang LB, Geng XL, Wang R, Zhang ZC (2015) Increased expression of lncRNA HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma. Int J Clin Exp Pathol 8(3):2994–3000

    PubMed  PubMed Central  Google Scholar 

  34. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M et al (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566

    Article  PubMed  Google Scholar 

  35. Matsui K, Nishizawa M, Ozaki T, Kimura T, Hashimoto I, Yamada M et al (2008) Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 47(2):686–697

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiang Fu.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, X., Fu, C. et al. Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol Biol Rep 43, 427–436 (2016). https://doi.org/10.1007/s11033-016-3975-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3975-1

Keywords

Navigation