Skip to main content

Advertisement

Log in

Non-Angiogenic Functions of VEGF in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

This review advances the hypothesis that the function of vascular endothelial growth factor (VEGF) in breast cancer is not limited to angiogenesis, and that VEGF signaling in breast carcinoma cells is important for the ability of these cells to evade apoptosis and progress towards invasive and metastatic disease. In other terms, VEGF signaling provides a selective advantage for the survival and dissemination of breast carcinoma cells that may be independent of angiogenesis. The key component of this hypothesis is that breast carcinoma cells express specific VEGF receptors and that these receptors respond to autocrine VEGF, resulting in the activation of signaling pathways that impede apoptosis and promote cell migration. A related hypothesis, which is developed in this review, is that the α6β4 integrin, which has been implicated in the survival and motility of breast cancer cells, can stimulate the translation of VEGF mRNA and, consequently, autocrine VEGF signaling. These findings imply that VEGF and VEGF receptor-based therapeutics, in addition to targeting angiogenesis, may also target tumor cells directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  1. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999;237:97–132.

    PubMed  CAS  Google Scholar 

  2. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266–76.

    Article  PubMed  CAS  Google Scholar 

  3. Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, et al. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 2001;61:5736–40.

    PubMed  CAS  Google Scholar 

  4. Harmey JH, Bouchier-Hayes D. Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: implications for anti-angiogenic therapy. Bioessays 2002;24:280–3.

    Article  PubMed  CAS  Google Scholar 

  5. Bates RC, Goldsmith JD, Bachelder RE, Brown C, Shibuya M, Oettgen P, et al. Flt-1 (VEGFR-1)-dependent survival characterizes the epithelial-mesenchymal transition of colonic organoids. Curr Biol 2003;13:1721–7.

    Article  PubMed  CAS  Google Scholar 

  6. Sharieff W. Bevacizumab in colorectal cancer. N Engl J Med 2004;351:1690–1; author reply -1.

    Article  PubMed  CAS  Google Scholar 

  7. Brusselmans K, Bono F, Collen D, Herbert JM, Carmeliet P, Dewerchin M. A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 2005;280:3493–9.

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  9. Chung J, Bachelder RE, Lipscomb EA, Shaw LM, Mercurio AM. Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J Cell Biol 2002;158:165–74.

    Article  PubMed  CAS  Google Scholar 

  10. Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 2001;98:1904–13.

    Article  PubMed  CAS  Google Scholar 

  11. Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, et al. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 2001; 98:10857–62.

    Article  PubMed  CAS  Google Scholar 

  12. Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 2002;62:7203–6.

    PubMed  CAS  Google Scholar 

  13. Pidgeon GP, Barr MP, Harmey JH, Foley DA, Bouchier-Hayes DJ. Vascular endothelial growth factor (VEGF) upregulates BCL-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells. Br J Cancer 2001;85:273–8.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–76.

    Article  PubMed  CAS  Google Scholar 

  15. Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela-Arispe ML, Yeo TK, et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 1999;5:1041–56.

    PubMed  CAS  Google Scholar 

  16. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92:735–45.

    Article  PubMed  CAS  Google Scholar 

  17. Ryden L, Jirstrom K, Bendahl PO, Ferno M, Nordenskjold B, Stal O, et al. Tumor-specific expression of vascular endothelial growth factor receptor 2 but not vascular endothelial growth factor or human epidermal growth factor receptor 2 is associated with impaired response to adjuvant tamoxifen in premenopausal breast cancer. J Clin Oncol 2005;23:4695–704.

    Article  PubMed  CAS  Google Scholar 

  18. Schoeffner DJ, Matheny SL, Akahane T, Factor V, Berry A, Merlino G, et al. VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms. Lab Invest 2005;85:608–23.

    Article  PubMed  CAS  Google Scholar 

  19. van't Veer LJ, Dal H, van de Vijver MJ, He YD, Hart AAM, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530–36.

    Article  Google Scholar 

  20. Castro-Rivera E, Ran S, Thorpe P, Minna JD. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci USA 2004;101:11432–7.

    Article  PubMed  CAS  Google Scholar 

  21. Barr MP, Byrne AM, Duffy AM, Condron CM, Devocelle M, Harriott P, et al. A peptide corresponding to the neuropilin-1-binding site on VEGF(165) induces apoptosis of neuropilin-1-expressing breast tumour cells. Br J Cancer 2005;92:328–33.

    PubMed  CAS  Google Scholar 

  22. He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 1997;90:739–51.

    Article  PubMed  CAS  Google Scholar 

  23. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD. Neuropilin is a semaphorin III receptor. Cell 1997;90:753–62.

    Article  PubMed  CAS  Google Scholar 

  24. Shvartsman SY, Hagan MP, Yacoub A, Dent P, Wiley HS, Lauffenburger DA. Autocrine loops with positive feedback enable context-dependent cell signaling. Am J Physiol Cell Physiol 2002;282:C545–59.

    PubMed  CAS  Google Scholar 

  25. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410:50–6.

    Article  PubMed  CAS  Google Scholar 

  26. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 1993;75:217–27.

    Article  PubMed  CAS  Google Scholar 

  27. Bachelder RE, Lipscomb EA, Lin X, Wendt MA, Chadborn NH, Eickholt BJ, et al. Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res 2003;63:5230–3.

    PubMed  CAS  Google Scholar 

  28. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004;118:277–9.

    Article  PubMed  CAS  Google Scholar 

  29. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2:442–54.

    Article  PubMed  CAS  Google Scholar 

  30. Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 2005;65:5991–5; discussion 5.

    Article  PubMed  CAS  Google Scholar 

  31. Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 2005;65:5996–6000; discussion-1.

    Article  PubMed  CAS  Google Scholar 

  32. Berx G, Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 2001;3:289–93.

    Article  PubMed  CAS  Google Scholar 

  33. Bates RC, Buret A, van Helden DF, Horton MA, Burns GF. Apoptosis induced by inhibition of intercellular contact. J Cell Biol 1994;125:403–15.

    Article  PubMed  CAS  Google Scholar 

  34. Neufeld G, Kessler O, Herzog Y. The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv Exp Med Biol 2002;515:81–90.

    PubMed  CAS  Google Scholar 

  35. Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 2002;85:357–68.

    Article  PubMed  CAS  Google Scholar 

  36. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 1999;99:71–80.

    Article  PubMed  CAS  Google Scholar 

  37. Sledge GW, Jr. Vascular endothelial growth factor in breast cancer: biologic and therapeutic aspects. Semin Oncol 2002; 29:104–10.

    Article  PubMed  CAS  Google Scholar 

  38. Koyama Y, Kaneko K, Akazawa K, Kanbayashi C, Kanda T, Hatakeyama K. Vascular endothelial growth factor-C and vascular endothelial growth factor-d messenger RNA expression in breast cancer: association with lymph node metastasis. Clin Breast Cancer 2003;4:354–60.

    Article  PubMed  CAS  Google Scholar 

  39. Akahane M, Akahane T, Shah A, Okajima E, Thorgeirsson UP. A potential role for vascular endothelial growth factor-D as an autocrine growth factor for human breast carcinoma cells. Anticancer Res 2005;25:701–7.

    PubMed  CAS  Google Scholar 

  40. Brown JM. The hypoxic cell: a target for selective cancer therapy–eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 1999;59:5863–70.

    PubMed  CAS  Google Scholar 

  41. von Marschall Z, Cramer T, Hocker M, Burde R, Plath T, Schirner M, et al. De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology 2000;119:1358–72.

    Article  Google Scholar 

  42. Lipscomb EA, Mercurio AM. Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev 2005;24:413–23.

    Article  PubMed  CAS  Google Scholar 

  43. Bachelder RE, Ribick MJ, Marchetti A, Falcioni R, Soddu S, Davis KR, et al. p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB. J Cell Biol 1999;147:1063–72.

    Article  PubMed  CAS  Google Scholar 

  44. Weaver VM, Lelievre S, Lakins JN, Chrenek MA, Jones JC, Giancotti F, et al. Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002;2:205–16.

    Article  PubMed  CAS  Google Scholar 

  45. Zahir N, Lakins JN, Russell A, Ming W, Chatterjee C, Rozenberg GI, et al. Autocrine laminin-5 ligates alpha6beta4 integrin and activates RAC and NFkappaB to mediate anchorage-independent survival of mammary tumors. J Cell Biol 2003;163:1397–407.

    Article  PubMed  CAS  Google Scholar 

  46. Farahani M, Treweeke AT, Toh CH, Till KJ, Harris RJ, Cawley JC, et al. Autocrine VEGF mediates the antiapoptotic effect of CD154 on CLL cells. Leukemia 2005;19:524–30.

    PubMed  CAS  Google Scholar 

  47. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001;15:807–26.

    Article  PubMed  CAS  Google Scholar 

  48. De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 1999;31:59–72.

    Article  PubMed  Google Scholar 

  49. McKendrick L, Pain VM, Morley SJ. Translation initiation factor 4E. Int J Biochem Cell Biol 1999;31:31–5.

    Article  PubMed  CAS  Google Scholar 

  50. Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM. Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 1997;91:949–60.

    Article  PubMed  CAS  Google Scholar 

  51. Gambaletta D, Marchetti A, Benedetti L, Mercurio AM, Sacchi A, Falcioni R. Cooperative signaling between alpha(6)beta(4) integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J Biol Chem 2000;275:10604–10.

    Article  PubMed  CAS  Google Scholar 

  52. Nguyen BP, Gil SG, Carter WG. Deposition of laminin 5 by keratinocytes regulates integrin adhesion and signaling. J Biol Chem 2000;275:31896–907.

    Article  PubMed  CAS  Google Scholar 

  53. Hintermann E, Bilban M, Sharabi A, Quaranta V. Inhibitory role of alpha6beta4-associated erbB-2 and phosphoinositide 3-kinase in keratinocyte haptotactic migration dependent on alpha3beta1 Integrin. J Cell Biol 2001;153:465–78.

    Article  PubMed  CAS  Google Scholar 

  54. Lipscomb EA, Simpson KJ, Ring JE, Dugan AS, Mercurio AM. The α6β4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Res 2005;65:10970–6.

    Article  PubMed  CAS  Google Scholar 

  55. Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res 1997; 57:3924–8.

    PubMed  CAS  Google Scholar 

  56. Wang ES, Teruya-Feldstein J, Wu Y, Zhu Z, Hicklin DJ, Moore MA. Targeting autocrine and paracrine VEGF receptor pathways inhibits human lymphoma xenografts in vivo. Blood 2004; 104:2893–902.

    Article  PubMed  CAS  Google Scholar 

  57. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003;421:639–43.

    Article  PubMed  CAS  Google Scholar 

  58. Senger DR, Van De Water L. VEGF expression by epithelial and stromal cell compartments: resolving a controversy. Am J Pathol 2000;157:1–3.

    PubMed  CAS  Google Scholar 

  59. Hiran TS, Mazurkiewicz JE, Kreienberg P, Rice FL, LaFlamme SE. Endothelial expression of the alpha6beta4 integrin is negatively regulated during angiogenesis. J Cell Sci 2003;116:3771–81.

    Article  PubMed  CAS  Google Scholar 

  60. Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Giancotti FG. Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell 2004;6:471–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work from the authors' laboratories discussed in this review was supported by NIH Grants CA80789 and CA89209 (AMM), and CA93855 (REB).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercurio, A.M., Lipscomb, E.A. & Bachelder, R.E. Non-Angiogenic Functions of VEGF in Breast Cancer. J Mammary Gland Biol Neoplasia 10, 283–290 (2005). https://doi.org/10.1007/s10911-006-9001-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-006-9001-9

Keywords

Navigation