Skip to main content

Advertisement

Log in

Combinatorial Intervention with Mesenchymal Stem Cells and Granulocyte Colony-Stimulating Factor in a Rat Model of Ulcerative Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Bone marrow mesenchymal stem cells sometimes improve symptoms of inflammatory bowel disease.

Aim

To test the effects of combined granulocyte colony-stimulating factor (G-CSF) and MSC therapy in a rat model of ulcerative colitis (UC).

Methods

Seventy-two rats with TNBS-induced UC were divided into control or treatment groups: control (no disease and no treatment), no treatment (model), 5-aminosalicylate (5-ASA) enema, or MSCs (labeled with BrdU) with (MSC/GCSF) or without (MSC) G-CSF, and G-CSF alone (GCSF). On days 14 and 28 post-treatment, macroscopic and histological appearances were assessed and the disease activity index (DAI) scored to evaluate the severity of disease. BrdU-labeled MSCs were identified by immunofluorescence to confirm transplantation and their location. The inflammatory profile of each group was evaluated by measuring expression of nuclear NF-κB p65, serum TNF-α, and IL-10 and by activity of mucosal myeloperoxidase (MPO).

Results

Rats receiving MSC and G-CSF combination therapy had increased recruitment of MSCs to the colonic mucosa compared with rats receiving MSC transplantation alone. On day 28, the DAI, MPO activity, serum TNF-α and IL-10 levels, and NF-κB p65 expression in the combination therapy group were significantly lower compared to animals receiving no treatment, MSCs alone, or G-CSF alone (P < 0.05).

Conclusion

Intravenously transplanted MSCs migrate and distribute to the colon to effectively alleviate the symptoms of UC, while G-CSF enhances this effect via an anti-inflammatory effect and improvement in the pathologic features of UC. G-CSF may be a promising therapeutic regulator of MSCs that can improve therapeutic outcomes in patients with UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lakatos PL, Lakatos L. Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol. 2008;14:3937–3947.

    Article  PubMed Central  PubMed  Google Scholar 

  2. McGovern DP, Gardet A, Torkvist L, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010;42:332–337.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Preda CM, Vermeire S, Rutgeerts P, et al. Prevalence and significance of perinuclear anti-neutrophil antibodies (pANCA) in Romanian patients with Crohn’s disease and ulcerative colitis. Rom J Gastroenterol. 2005;14:357–360.

    PubMed  Google Scholar 

  5. Ebert EC, Geng X, Lin J, et al. Autoantibodies against human tropomyosin isoform 5 in ulcerative colitis destroys colonic epithelial cells through antibody and complement-mediated lysis. Cell Immunol. 2006;244:43–49.

    Article  CAS  PubMed  Google Scholar 

  6. Ebert EC, Geng X, Bajpai M, et al. Antibody to tropomyosin isoform 5 and complement induce the lysis of colonocytes in ulcerative colitis. Am J Gastroenterol. 2009;104:2996–3003.

    Article  CAS  PubMed  Google Scholar 

  7. Veltkamp C, Anstaett M, Wahl K, et al. Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFalpha treatment. Gut. 2011;60:1345–1353.

    Article  CAS  PubMed  Google Scholar 

  8. Fuss IJ, Strober W. The role of IL-13 and NK T cells in experimental and human ulcerative colitis. Mucosal Immunol. 2008;1:S31–S33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Nishihira J, Mitsuyama K. Overview of the role of macrophage migration inhibitory factor (MIF) in inflammatory bowel disease. Curr Pharm Des. 2009;15:2104–2109.

    Article  CAS  PubMed  Google Scholar 

  10. Martinesi M, Treves C, Bonanomi AG, et al. Down-regulation of adhesion molecules and matrix metalloproteinases by ZK 156979 in inflammatory bowel diseases. Clin Immunol. 2010;136:51–60.

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez-Munoz F, Fonseca-Camarillo G, Villeda-Ramirez MA, et al. Transcript levels of Toll-Like receptors 5, 8 and 9 correlate with inflammatory activity in ulcerative colitis. BMC Gastroenterol. 2011;11:138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wu Y, Wang J, Scott PG, et al. Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen. 2007;15:S18–S26.

    Article  PubMed  Google Scholar 

  13. Kuo TK, Hung SP, Chuang CH, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008;134:2111–2121.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hayashi Y, Tsuji S, Tsujii M, et al. Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J Pharmacol Exp Ther. 2008;326:523–531.

    Article  CAS  PubMed  Google Scholar 

  15. He XW, He XS, Lian L, et al. Systemic infusion of bone marrow-derived mesenchymal stem cells for treatment of experimental colitis in mice. Dig Dis Sci. 2012;57:3136–3144.

    Article  PubMed  Google Scholar 

  16. Lazebnik LB, Knyazev OV, Parfenov AI, et al. Optimization of cell therapy in patients with inflammatory bowel diseases. Ter Arkh. 2012;84:10–17.

    CAS  PubMed  Google Scholar 

  17. Metcalf D. The colony-stimulating factors and cancer. Nat Rev Cancer. 2010;10:425–434.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Harbord MW, Marks DJ, Forbes A, et al. Impaired neutrophil chemotaxis in Crohn’s disease relates to reduced production of chemokines and can be augmented by granulocyte-colony stimulating factor. Aliment Pharmacol Ther. 2006;24:651–660.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Smith AM, Rahman FZ, Hayee B, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med. 2009;206:1883–1897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Casanova JL, Abel L. Revisiting Crohn’s disease as a primary immunodeficiency of macrophages. J Exp Med. 2009;206:1839–1843.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Motavallian A, Minaiyan M, Rabbani M, et al. Does cisapride, as a 5HT4 receptor agonist, aggravate the severity of TNBS-induced colitis in rat? Gastroenterol Res Pract. 2012;2012:362536.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang M, Long Y, Sun Y, et al. Evidence for the complementary and synergistic effects of the three-alkaloid combination regimen containing berberine, hypaconitine and skimmianine on the ulcerative colitis rats induced by trinitrobenzene-sulfonic acid. Eur J Pharmacol. 2011;651:187–196.

    Article  CAS  PubMed  Google Scholar 

  23. Guo X, Liu ES, Ko JK, et al. Protective role of cyclooxygenase inhibitors in the adverse action of passive cigarette smoking on the initiation of experimental colitis in rats. Eur J Pharmacol. 2001;411:193–203.

    Article  CAS  PubMed  Google Scholar 

  24. Deng X, Tolstanova G, Khomenko T, et al. Mesalamine restores angiogenic balance in experimental ulcerative colitis by reducing expression of endostatin and angiostatin: novel molecular mechanism for therapeutic action of mesalamine. J Phamracol Exp Ther. 2009;331:1071–1078.

    Article  CAS  Google Scholar 

  25. Vowinkel T, Kalogeris TJ, Mori M, et al. Impact of dextran sulfate sodium load on the severity of inflammation in experimental colitis. Dig Dis Sci. 2004;49:556–564.

    Article  CAS  PubMed  Google Scholar 

  26. Fedorak RN, Empey LR, MacArthur C, et al. Misoprostol provides a colonic mucosal protective effect during acetic acid-induced colitis in rats. Gastroenterology. 1990;98:615–625.

    CAS  PubMed  Google Scholar 

  27. Kashyap A, Forman SJ. Autologous bone marrow transplantation for non-Hodgkin’s lymphoma resulting in long-term remission of coincidental Crohn’s disease. Br J Haematol. 1998;103:651–652.

    Article  CAS  PubMed  Google Scholar 

  28. Brittan M, Alison MR, Schier S, et al. Bone marrow stem cell-mediated regeneration in IBD: where do we go from here? Gastroenterology. 2007;132:1171–1173.

    Article  PubMed  Google Scholar 

  29. Ricart E. Current status of mesenchymal stem cell therapy and bone marrow transplantation in IBD. Dig Dis (Basel, Switz). 2012;30:387–391.

    Article  Google Scholar 

  30. Neurath MF, Fuss I, Pasparakis M, et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997;27:1743–1750.

    Article  CAS  PubMed  Google Scholar 

  31. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, et al. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 1996;2:998–1004.

    Article  CAS  PubMed  Google Scholar 

  32. Shouval DS, Ouahed J, Biswas A, et al. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv Immunol. 2014;122:177–210.

    CAS  PubMed  Google Scholar 

  33. Singh UP, Singh NP, Guan H, et al. Leptin antagonist ameliorates chronic colitis in IL-10/ mice. Immunobiology. 2013;218:1439–1451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chadwick VS, Schlup MM, Ferry DM, et al. Measurements of unsaturated vitamin B12-binding capacity and myeloperoxidase as indices of severity of acute inflammation in serial colonoscopy biopsy specimens from patients with inflammatory bowel disease. Scand J Gastroenterol. 1990;25:1196–1204.

    Article  CAS  PubMed  Google Scholar 

  35. Saiki T. Myeloperoxidase concentrations in the stool as a new parameter of inflammatory bowel disease. Kurume Med J. 1998;45:69–73.

    Article  CAS  PubMed  Google Scholar 

  36. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107:7–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Chang YJ, Huang XJ. Immune tolerance induced by cytokines in allogeneic hematopoietic stem cell transplantation. Beijing Da Xue Xue Bao. 2009;41:208–211.

    CAS  PubMed  Google Scholar 

  38. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843.

    Article  PubMed  Google Scholar 

  39. Egi H, Hayamizu K, Yoshimitsu M, et al. Regulation of T helper type-1 immunity in hapten-induced colitis by host pretreatment with granulocyte colony-stimulating factor. Cytokine. 2003;23:23–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of Heilongjiang (D200826) and the Ministry of Science and Technology (2013CB967200).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YongGuo Li or LiJun Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Chen, Y., Wang, X. et al. Combinatorial Intervention with Mesenchymal Stem Cells and Granulocyte Colony-Stimulating Factor in a Rat Model of Ulcerative Colitis. Dig Dis Sci 60, 1948–1957 (2015). https://doi.org/10.1007/s10620-015-3655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3655-3

Keywords

Navigation