Skip to main content

Advertisement

Log in

SCUBE3 regulation of early lung cancer angiogenesis and metastatic progression

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) is strongly expressed in extremely invasive lung carcinoma. We showed in our previous study that SCUBE3 triggers the transforming growth factor-β pathway and subsequently promotes tumor angiogenesis and the epithelial–mesenchymal transition (EMT). However, the role of SCUBE3 in early tumor expansion hasn’t been fully demonstrated in vivo. The present study used dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to temporally assess tumor angiogenesis in SCUBE3-knockdown and control non-small-cell lung carcinoma (NSCLC) cancer cells in the early tumor stage (weeks 1–3). We further evaluated the metastatic potential of the SCUBE3-knockdown and control tumor cells using a circulating tumor cell (CTC) assay. The differences in gene expression profile between these cell lines were determined using microarray analysis. The results show that SCUBE3 knockdown was associated with lower vascular permeability in the tumor and effectively inhibited the metastatic potential of NSCLC, as evidenced by the decreased CTCs in the mice bearing SCUBE3-knockdown tumors. Microarray analysis revealed that several genes involved in angiogenesis and EMT were down-regulated in SCUBE3-knockdown tumors, including matrix metalloproteinases (MMPs) 2, 9, and 14, (MMP-2, MMP-9, and MMP-14, respectively), fibronectin (FN-1), lysyl oxidase (LOX), hairy/enhancer-of-split related with YRPW motif protein 1 (HEY1), early growth response protein 1 (EGR1), and interleukin 8 (IL-8). Together these data suggest that SCUBE3 is a potential target for pharmacological intervention. The findings of the present study also show that differences in vascular permeability precede the CTCs detection, indicating that DCE-MRI may be a sensitive biomarker for assessing tumor invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AHNAK:

Neuroblast differentiation-associated protein AHNAK

ANGPTL4:

Angiopoietin-related protein 4

CTC:

Circulating tumor cell

CXCL10:

C-X-C motif ligand 10

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

ECM:

Extracellular matrix

EGR1:

Early growth response protein 1

EMT:

Epithelial-mesenchymal transition

FN:

Fibronectin

FOV:

Field of view

GCOS:

GeneChip Operating System

Gd-DTPA:

Gadolinium-diethylenetriamine pentaacetic acid

H&E:

Hematoxylin and eosin

HEY1:

Hairy/enhancer-of-split related with YRPW motif protein 1

IL-8:

Interleukin 8

LOX:

Lysyl oxidase

MMP:

Matrix metalloproteinases

NEX:

Number of excitation

NOD-SCID:

Nonobese diabetic-severe combined immunodeficiency

NSCLC:

Non-small-cell lung carcinoma

PAI:

Plasminogen activator inhibitor

PBS:

Phosphate-buffered saline

SCUBE3:

Signal peptide-CUB-EGF-like domain-containing protein 3

Slth:

Slice thickness

SMAD:

Mothers against decapentaplegic homolog

T2WI:

T2-weighted images

TE:

Echo time

TGF-β:

Transforming growth factor-β

TR:

Repetition time

VEGF:

Vascular endothelial growth factor

References

  1. Wu YY, Peck K, Chang YL, Pan SH, Cheng YF, Lin JC, Yang RB, Hong TM, Yang PC (2011) SCUBE3 is an endogenous TGF-beta receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene 30:3682–3693

    Article  PubMed  CAS  Google Scholar 

  2. Shih JY, Yang PC (2011) The EMT regulator slug and lung carcinogenesis. Carcinogenesis 32:1299–1304

    Article  PubMed  CAS  Google Scholar 

  3. Alves CC, Carneiro F, Hoefler H, Becker KF (2009) Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci 14:3035–3050

    Article  Google Scholar 

  4. Becker KF, Rosivatz E, Blechschmidt K, Kremmer E, Sarbia M, Hofler H (2007) Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs 185:204–212

    Article  PubMed  CAS  Google Scholar 

  5. Folkman J (1996) New perspectives in clinical oncology from angiogenesis research. Eur J Cancer 32A:2534–2539

    Article  PubMed  CAS  Google Scholar 

  6. Buckley DL, Drew PJ, Mussurakis S, Monson JR, Horsman A (1997) Microvessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging 7:461–464

    Article  PubMed  CAS  Google Scholar 

  7. Knopp MV, Weiss E, Sinn HP, Mattern J, Junkermann H, Radeleff J, Magener A, Brix G, Delorme S, Zuna I et al (1999) Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging 10:260–266

    Article  PubMed  CAS  Google Scholar 

  8. Tuncbilek N, Tokatli F, Altaner S, Sezer A, Ture M, Omurlu IK, Temizoz O (2011) Prognostic value DCE-MRI parameters in predicting factor disease free survival and overall survival for breast cancer patients. Eur J Radiol 81(5):863–867

    Article  PubMed  Google Scholar 

  9. Tuncbilek N, Karakas HM, Altaner S (2004) Dynamic MRI in indirect estimation of microvessel density, histologic grade, and prognosis in colorectal adenocarcinomas. Abdom Imaging 29:166–172

    Article  PubMed  CAS  Google Scholar 

  10. Guo J, Reddick WE, Glass JO, Ji Q, Billups CA, Wu J, Hoffer FA, Kaste SC, Jenkins JJ, Ortega Flores XC et al (2011) Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer 118(15):3376–3385

    Google Scholar 

  11. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  PubMed  CAS  Google Scholar 

  12. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

  13. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  PubMed  CAS  Google Scholar 

  14. Zijlstra A, Mellor R, Panzarella G, Aimes RT, Hooper JD, Marchenko ND, Quigley JP (2002) A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 62:7083–7092

    PubMed  CAS  Google Scholar 

  15. Hong TM, Chen YL, Wu YY, Yuan A, Chao YC, Chung YC, Wu MH, Yang SC, Pan SH, Shih JY et al (2007) Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 13:4759–4768

    Article  PubMed  CAS  Google Scholar 

  16. Yuan A, Lin CY, Chou CH, Shih CM, Chen CY, Cheng HW, Chen YF, Chen JJ, Chen JH, Yang PC et al (2011) Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE- and SSCE-MRI. PLoS ONE 6:e16062

    Article  PubMed  CAS  Google Scholar 

  17. Massague J (2008) TGFbeta in Cancer. Cell 134:215–230

    Article  PubMed  CAS  Google Scholar 

  18. Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8:918–921

    Article  PubMed  CAS  Google Scholar 

  19. Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568

    Article  PubMed  CAS  Google Scholar 

  20. Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 103:1237–1241

    Article  PubMed  CAS  Google Scholar 

  21. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691

    Article  PubMed  CAS  Google Scholar 

  22. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    Article  PubMed  CAS  Google Scholar 

  23. Bussolino F, Albini A, Camussi G, Presta M, Viglietto G, Ziche M, Persico G (1996) Role of soluble mediators in angiogenesis. Eur J Cancer 32A:2401–2412

    Article  PubMed  CAS  Google Scholar 

  24. Shao W, Wang W, Xiong XG, Cao C, Yan TD, Chen G, Chen H, Yin W, Liu J, Gu Y et al (2011) Prognostic impact of MMP-2 and MMP-9 expression in pathologic stage IA non-small cell lung cancer. J Surg Oncol 104:841–846

    Article  PubMed  CAS  Google Scholar 

  25. Shin SY, Kim JH, Baker A, Lim Y, Lee YH (2010) Transcription factor Egr-1 is essential for maximal matrix metalloproteinase-9 transcription by tumor necrosis factor alpha. Mol Cancer Res 8:507–519

    Article  PubMed  CAS  Google Scholar 

  26. Hegele A, Heidenreich A, Kropf J, von Knobloch R, Varga Z, Hofmann R, Olbert P (2004) Plasma levels of cellular fibronectin in patients with localized and metastatic renal cell carcinoma. Tumour Biol 25:111–116

    Article  PubMed  CAS  Google Scholar 

  27. Han JY, Kim HS, Lee SH, Park WS, Lee JY, Yoo NJ (2003) Immunohistochemical expression of integrins and extracellular matrix proteins in non-small cell lung cancer: correlation with lymph node metastasis. Lung Cancer 41:65–70

    Article  PubMed  Google Scholar 

  28. Jakowlew SB, Mariano JM, You L, Mathias A (1997) Differential regulation of protease and extracellular matrix protein expression by transforming growth factor-beta 1 in non-small cell lung cancer cells and normal human bronchial epithelial cells. Biochim Biophys Acta 1353:157–170

    Article  PubMed  CAS  Google Scholar 

  29. Han S, Khuri FR, Roman J (2006) Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res 66:315–323

    Article  PubMed  CAS  Google Scholar 

  30. Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362

    Article  PubMed  CAS  Google Scholar 

  31. Yang Z, Zhang X, Gang H, Li X, Li Z, Wang T, Han J, Luo T, Wen F, Wu X (2007) Up-regulation of gastric cancer cell invasion by twist is accompanied by N-cadherin and fibronectin expression. Biochem Biophys Res Commun 358:925–930

    Article  PubMed  CAS  Google Scholar 

  32. Jia D, Yan M, Wang X, Hao X, Liang L, Liu L, Kong H, He X, Li J, Yao M (2010) Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion. BMC Cancer 10:364

    Article  PubMed  Google Scholar 

  33. De Larco JE, Wuertz BR, Furcht LT (2004) The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res 10:4895–4900

    Article  PubMed  Google Scholar 

  34. Petreaca ML, Yao M, Liu Y, Defea K, Martins-Green M (2007) Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol Biol Cell 18:5014–5023

    Article  PubMed  CAS  Google Scholar 

  35. Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, Gudas JM, Bar-Eli M (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161:125–134

    Article  PubMed  CAS  Google Scholar 

  36. Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K (1999) Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 5:3711–3721

    PubMed  CAS  Google Scholar 

  37. Inoue K, Slaton JW, Kim SJ, Perrotte P, Eve BY, Bar-Eli M, Radinsky R, Dinney CP (2000) Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res 60:2290–2299

    PubMed  CAS  Google Scholar 

  38. Mian BM, Dinney CP, Bermejo CE, Sweeney P, Tellez C, Yang XD, Gudas JM, McConkey DJ, Bar-Eli M (2003) Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin Cancer Res 9:3167–3175

    PubMed  CAS  Google Scholar 

  39. Strieter RM, Belperio JA, Phillips RJ, Keane MP (2004) CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 14:195–200

    Article  PubMed  CAS  Google Scholar 

  40. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    PubMed  CAS  Google Scholar 

  41. Six I, Kureishi Y, Luo Z, Walsh K (2002) Akt signaling mediates VEGF/VPF vascular permeability in vivo. FEBS Lett 532:67–69

    Article  PubMed  CAS  Google Scholar 

  42. Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P et al (2006) Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA 103:18721–18726

    Article  PubMed  CAS  Google Scholar 

  43. Westhoff B, Colaluca IN, D’Ario G, Donzelli M, Tosoni D, Volorio S, Pelosi G, Spaggiari L, Mazzarol G, Viale G et al (2009) Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA 106:22293–22298

    Article  PubMed  CAS  Google Scholar 

  44. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 105:6392–6397

    Article  PubMed  CAS  Google Scholar 

  45. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    Article  PubMed  CAS  Google Scholar 

  46. Gao Y, Xiao Q, Ma H, Li L, Liu J, Feng Y, Fang Z, Wu J, Han X, Zhang J et al (2010) LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc Natl Acad Sci USA 107:18892–18897

    Article  PubMed  CAS  Google Scholar 

  47. Wilgus ML, Borczuk AC, Stoopler M, Ginsburg M, Gorenstein L, Sonett JR, Powell CA (2011) Lysyl oxidase: a lung adenocarcinoma biomarker of invasion and survival. Cancer 117:2186–2191

    Article  PubMed  CAS  Google Scholar 

  48. Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ, Nabi IR (2010) Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res 70:3780–3790

    Article  PubMed  CAS  Google Scholar 

  49. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH et al (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631–635

    Article  PubMed  CAS  Google Scholar 

  50. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL et al (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89:1165–1173

    Article  PubMed  CAS  Google Scholar 

  51. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6:1365–1375

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper was written in memory of late Dr. Konan Peck (1958–2011) and to honor his many valuable contributions to this research project. The authors acknowledge technical support from the Functional and Micro-Magnetic Resonance Imaging Center supported by the National Research Program for Genomic Medicine, National Science Council, Taiwan, Republic of China (NSC 99-3112-B-001-020). We thank Dr. Pan-Chyr Yang (Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan) for providing the CL1-5 cell lines with and without SCUBE3 knockdown. We also appreciate the help of Mr. Yi-Hua Hsu with discussions on histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chang.

Additional information

Cheng-Hung Chou and Yi-Fang Cheng contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, CH., Cheng, YF., Siow, T.Y. et al. SCUBE3 regulation of early lung cancer angiogenesis and metastatic progression. Clin Exp Metastasis 30, 741–752 (2013). https://doi.org/10.1007/s10585-013-9575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9575-8

Keywords

Navigation