Skip to main content

Advertisement

Log in

Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The type I insulin-like growth factor (IGF) receptor (IGF1R) is a transmembrane tyrosine kinase involved in breast cancer proliferation, survival, and metastasis. Several monoclonal antibodies directed against the receptor are in clinical trials. In order to develop a methodology to detect and measure IGF1R levels in breast cancer cells, we covalently conjugated an IGF1R antibody, AVE-1642, with quantum dots (Qdots), which are nanocrystals that emit fluorescence upon excitation. AVE-1642 Qdots only bound to cells that express IGF1R, and measured IGF1R levels by fluorescence emission at 655 nm. After binding to the cell surface, AVE-1642 Qdots underwent receptor mediated endocytosis, localized to endosome, and later translocated into the nucleus. Treating MCF-7 cells with AVE-1642 Qdots, but not unconjugated Qdots alone, downregulated IGF1R levels and rendered cells refractory to IGF-I stimulation. Furthermore, cell proliferation was slightly inhibited by AVE-1642 Qdots, but not the unconjugated Qdots. Our data suggest that AVE-1642 Qdots can be used to detect IGF1R expression and measure changes in cell surface receptor levels. In addition, the inhibitory effect of AVE-1642 Qdots to cell proliferation implies that it may serve as a traceable therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pegram MD, Pietras R, Bajamonde A, Klein P, Fyfe G (2005) Targeted therapy: wave of the future. J Clin Oncol 23:1776–1781

    Article  PubMed  CAS  Google Scholar 

  2. Sepp-Lorenzino L (1998) Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 47:235–253

    Article  PubMed  CAS  Google Scholar 

  3. Cullen KJ, Yee D, Sly WS, Perdue J, Hampton B, Lippman ME, Rosen N (1990) Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res 50:48–53

    PubMed  CAS  Google Scholar 

  4. Zhang H, Yee D (2004) The therapeutic potential of agents targeting the type I insulin-like growth factor receptor. Expert Opin Investig Drugs 13:1569–1577

    Article  PubMed  CAS  Google Scholar 

  5. Sachdev D, Li SL, Hartell JS, Fujita-Yamaguchi Y, Miller JS, Yee D (2003) A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res 63:627–635

    PubMed  CAS  Google Scholar 

  6. Maloney EK, McLaughlin JL, Dagdigian NE, Garrett LM, Connors KM, Zhou XM, Blattler WA, Chittenden T, Singh R (2003) An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res 63:5073–5083

    PubMed  CAS  Google Scholar 

  7. Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS, Bassi R, Abdullah R, Hooper AT, Koo H, Jimenez X, Johnson D, Apblett R, Kussie P, Bohlen P, Witte L, Hicklin DJ, Ludwig DL (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63:8912–8921

    PubMed  CAS  Google Scholar 

  8. Goetsch L, Gonzalez A, Leger O, Beck A, Pauwels PJ, Haeuw JF, Corvaia N (2005) A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 113:316–328

    Article  PubMed  CAS  Google Scholar 

  9. Wu JD, Odman A, Higgins LM, Haugk K, Vessella R, Ludwig DL, Plymate SR (2005) In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res 11:3065–3074

    Article  PubMed  CAS  Google Scholar 

  10. Rowinsky EK, Youssoufian H, Tonra JR, Solomon P, Burtrum D, Ludwig DL (2007) IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 13:5549s–5555s

    Article  PubMed  CAS  Google Scholar 

  11. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  PubMed  CAS  Google Scholar 

  12. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed  CAS  Google Scholar 

  13. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  PubMed  CAS  Google Scholar 

  14. Jiang W, Papa E, Fischer H, Mardyani S, Chan WC (2004) Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol 22:607–609

    Article  PubMed  CAS  Google Scholar 

  15. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  16. Sachdev D, Singh R, Fujita-Yamaguchi Y, Yee D (2006) Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res 66:1–12

    Article  Google Scholar 

  17. Zhang H, Pelzer AM, Kiang DT, Yee D (2007) Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Res 67:391–397

    Article  PubMed  CAS  Google Scholar 

  18. Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D (2006) Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer 95:1220–1228

    Article  PubMed  CAS  Google Scholar 

  19. Rothenberger S, Iacopetta BJ, Kuhn LC (1987) Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site. Cell 49:423–431

    Article  PubMed  CAS  Google Scholar 

  20. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  PubMed  CAS  Google Scholar 

  21. Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–1144

    Article  PubMed  CAS  Google Scholar 

  22. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    Article  PubMed  CAS  Google Scholar 

  23. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  PubMed  CAS  Google Scholar 

  24. Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305:51–62

    Article  PubMed  CAS  Google Scholar 

  25. Pante N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13:425–434

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CA, Urano Y, Choyke PL (2007) Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 7:1711–1716

    Article  PubMed  CAS  Google Scholar 

  27. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86

    Article  PubMed  CAS  Google Scholar 

  28. Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396

    Article  PubMed  CAS  Google Scholar 

  29. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  PubMed  CAS  Google Scholar 

  30. Jackson H, Muhammad O, Daneshvar H, Nelms J, Popescu A, Vogelbaum MA, Bruchez M, Toms S. A. (2007) Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 60:524–529; discussion 529–530

    Article  PubMed  Google Scholar 

  31. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  32. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Google Scholar 

  33. Rhyner MN, Smith AM, Gao XH, Mao H, Yang LL, Nie SM (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217

    Article  PubMed  CAS  Google Scholar 

  34. Berns EM, Klijn JG, van Staveren IL, Portengen H, Foekens JA (1992) Sporadic amplification of the insulin-like growth factor 1 receptor gene in human breast tumors. Cancer Res 52:1036–1039

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Renato Baserga for R- cells. We are grateful to the services from the University of Minnesota Cancer Center Flow Cytometry Shared Resource and Confocal Microscopy Facility.Grant support: Department of Defense Post-doctoral Grant BC050548 (HZ) and R01CA74285 (DY), and Cancer Center Support Grant P30 077598.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Sachdev, D., Wang, C. et al. Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells. Breast Cancer Res Treat 114, 277–285 (2009). https://doi.org/10.1007/s10549-008-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0014-5

Key words

Navigation