Skip to main content

Advertisement

Log in

Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: identification of rab31 as an independent prognostic factor

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the pure prognostic impact of the uPA-receptor splice variant uPAR-del4/5 for lymph node-negative breast cancer patients, and to identify differentially expressed genes associated with high or low uPAR-del4/5 mRNA levels.

Patients and methods

mRNA transcript levels were measured by real-time PCR in tumor samples from 280 node-negative breast cancer patients who had not received adjuvant systemic therapy. Endpoints were distant metastasis-free survival (DMFS) and overall survival (OS). Gene expression analysis was performed with RNA isolated from breast cancer tissue and breast cancer cell lines using Affymetrix U133a GeneChips.

Results

In multivariate analysis, uPAR-del4/5 significantly contributed to the base model of traditional prognostic factors for DMFS (HR = 3.29, P < 0.001) and OS (HR = 2.87, P = 0.002). Using microarrays, seven genes were found to be up-regulated in tumor samples and cancer cell lines with high uPAR-del4/5 mRNA expression. The gene encoding rab31, a member of the Ras oncogene family, was selected for quantitative analysis of mRNA expression in the set of 280 patients. High rab31 values were significantly associated with worse outcome of patients for DMFS (HR = 2.27, P < 0.001) and OS (HR = 2.01, P = 0.008) in multivariate analysis, independent from uPAR-del4/5. The patient subgroup with high uPAR-del4/5 and rab31 levels showed the worst DMFS and OS (P < 0.001, both) compared with tumors with low values of both factors.

Conclusions

Our results suggest that uPAR-del4/5 and rab31 mRNA represent independent prognostic markers in breast cancer and may be components of different, but possibly associated, tumor-relevant signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dano K, Behrendt N, Hoyer-Hansen G et al (2005) Plasminogen activation and cancer. Thromb Haemost 93:676–681

    PubMed  CAS  Google Scholar 

  2. Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57:25–40

    Article  PubMed  CAS  Google Scholar 

  3. Reuning U, Magdolen V, Hapke S et al (2003) Molecular and functional interdependence of the urokinase-type plasminogen activator system with integrins. Biol Chem 384:1119–1131

    Article  PubMed  CAS  Google Scholar 

  4. Blasi F, Carmeliet P (2002) uPAR: a versatile signaling orchestrator. Nat Rev Mol Cell Biol 3:932–943

    Article  PubMed  CAS  Google Scholar 

  5. Ragno P (2006) The urokinase receptor: a ligand or a receptor? Story of a sociable molecule. Cell Mol Life Sci 63:1028–1037

    Article  PubMed  CAS  Google Scholar 

  6. Duffy MJ (2004) The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 10:39–49

    Article  PubMed  CAS  Google Scholar 

  7. Harbeck N, Kates RE, Gauger K et al (2004) Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost 91:450–456

    PubMed  CAS  Google Scholar 

  8. Foekens JA, Peters HA, Look MP et al (2000) The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 60:636–643

    PubMed  CAS  Google Scholar 

  9. Kotzsch M, Luther T, Harbeck N et al (2000) New ELISA for quantification of human urokinase receptor (CD87) in cancer. Int J Oncol 17:827–834

    PubMed  CAS  Google Scholar 

  10. De Witte JH, Foekens JA, Brünner N et al (2001) Prognostic impact of urokinase-type plasminogen activator receptor (uPAR) in cytosols and pellet extracts derived from primary breast tumours. Br J Cancer 85:85–92

    Article  PubMed  Google Scholar 

  11. de Bock CE, Wang Y (2004) Clinical significance of urokinase-type plasminogen activator receptor (uPAR) expression in cancer. Med Res Rev 24:13–39

    Article  PubMed  CAS  Google Scholar 

  12. Duffy MJ, Duggan C (2004) The urokinase plasminogen activator system: a rich source of tumour markers for the individualised management of patients with cancer. Clin Biochem 37:541–548

    Article  PubMed  CAS  Google Scholar 

  13. Llinas P, Le Du MH, Gardsvoll H et al (2005) Crystal structure of the human urokinase plasmi-nogen activator receptor bound to an antagonist peptide. EMBO J 24:1655–1663

    Article  PubMed  CAS  Google Scholar 

  14. Huai Q, Mazar AP, Kuo A et al (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science 311:656–659

    Article  PubMed  CAS  Google Scholar 

  15. Montouri N, Visconte V, Rossi G et al (2005) Soluble and cleaved forms of the urokinase-receptor: degradation products or active molecules? Thromb Haemost 93:192–198

    Google Scholar 

  16. Luther T, Kotzsch M, Meye A et al (2003) Identification of a novel urokinase receptor splice variant and its prognostic relevance in breast cancer. Thromb Haemost 89:705–717

    PubMed  CAS  Google Scholar 

  17. Kotzsch M, Farthmann J, Meye A et al (2005) Prognostic relevance of uPAR-del4/5 and TIMP-3 mRNA expression levels in breast cancer. Eur J Cancer 41:2760–2768

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  19. Sieuwerts AM, Meijer-van Gelder ME et al (2005) How ADAM-9 and ADAM-11 differentially from estrogen receptor predict response to tamoxifen treatment in patients with recurrent breast cancer: a retrospective study. Clin Cancer Res 11:7311–7321

    Article  PubMed  CAS  Google Scholar 

  20. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  21. Barlow RE, Bartholomew DJ, Bremmer JM et al (1972) Statistical interference under order restrictions. Wiley, New York

    Google Scholar 

  22. Foekens JF, Schmitt M, van Putten WL et al (1994) Plasminogen activator inhibitor-1 and prognosis in primary breast cancer. J Clin Oncol 12:1648–1658

    PubMed  CAS  Google Scholar 

  23. Cheng JM, Lahad JP, Kuo WL et al (2004) The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Med 10:1251–1256

    Article  PubMed  CAS  Google Scholar 

  24. Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192

    Article  PubMed  CAS  Google Scholar 

  25. Braun S, Cevatli BS, Assemi C et al (2001) Comparative analysis of micrometastasis to the bone marrow and lymph nodes of node-negative breast cancer patients receiving no adjuvant therapy. J Clin Oncol 19:1468–1475

    PubMed  CAS  Google Scholar 

  26. Schmitt M, Wilhelm OG, Reuning U et al (2000) The urokinase plasminogen activator system as a novel target for tumour therapy. Fibrinol Proteol 14:114–1132

    Article  CAS  Google Scholar 

  27. Bouchet C, Hacene K, Martin PM et al (1999) Dissemination risk index based on plasminogen activator system components in primary breast cancer. J Clin Oncol 17:3048–3057

    PubMed  CAS  Google Scholar 

  28. Guyton DP, Evans DM, Sloan-Stakleff KD (2000) Urokinase plasminogen activator receptor (uPAR): A potential indicator of invasion for in situ breast cancer. Breast J 6:130–136

    Article  PubMed  CAS  Google Scholar 

  29. Casey JR, Petranka JG, Kottra J et al (1994) The structure of the urokinase-type plasminogen activator receptor gene. Blood 84:1151–1156

    PubMed  CAS  Google Scholar 

  30. Pyke C, Eriksen J, Solberg H et al (1993) An alternatively spliced variant of mRNA for the human receptor for urokinase plasminogen activator. FEBS Lett 326:69–74

    Article  PubMed  CAS  Google Scholar 

  31. Stephens RW, Nielsen HJ, Christensen IJ et al (1999) Plasma urokinase receptor levels in patients with colorectal cancer: relationship to prognosis. J Natl Cancer Inst 91:869–874

    Article  PubMed  CAS  Google Scholar 

  32. Riisbro R, Christensen IB, Piironen T et al (2002) Prognostic significance of soluble urokinase plasminogen activator receptor in serum and cytosol of tumor tissue from patients with primary breast cancer. Clin Cancer Res 8:1132–1141

    PubMed  Google Scholar 

  33. Grebenchtchikov N, Maguire TM, Riisbro R et al (2005) Measurement of plasminogen activator system components in plasma and tumor tissue extracts obtained from patients with breast cancer: an EORTC Receptor and Biomarker Group collaboration. Oncol Rep 14:235–239

    PubMed  CAS  Google Scholar 

  34. Farthmann J, Holzscheiter L, Biermann J et al (2004) Development of quantitative RT-PCR assays for wild-type urokinase receptor (uPAR-wt) and its splice variant uPAR-del5. Radiol Oncol 38:111–119

    CAS  Google Scholar 

  35. Pacheco MM, Nishimoto IN, Mourao et al (2001) Prognostic significance of the combined expression of matrix metalloproteinase-9, urokinase type plasminogen activator and its recep-tor in breast cancer as measured by Northern blot analysis. Int J Biol Markers 16:62–68

    PubMed  CAS  Google Scholar 

  36. Bao X, Faris AE, Jang EK et al (2002) Molecular cloning, bacterial expression and properties of Rab31 and Rab32. Eur J Biochem 269:259–271

    Article  PubMed  CAS  Google Scholar 

  37. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  38. Jones MC, Caswell PT, Norman JC (2006) Endocytic recycling pathways: emerging regulators of cell migration. Curr Opin Cell Biol 18:549–557

    Article  PubMed  CAS  Google Scholar 

  39. Ceresa BP (2006) Regulation of EGFR endocytic trafficking by rab proteins. Histol Histopathol 21:987–993

    PubMed  CAS  Google Scholar 

  40. Pellinen T, Arjonen A, Vuoriluoto K et al (2006) Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of ß1-integrins. J Cell Biol 173:767–780

    Article  PubMed  CAS  Google Scholar 

  41. Wei Y, Lukashev M, Simon DI et al (1996) Regulation of integrin function by the urokinase receptor. Science 273:1551–1555

    Article  PubMed  CAS  Google Scholar 

  42. Liu D, Aguirre Ghiso J, Estrada Y et al (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of human carcinoma. Cancer Cell 1:445–457

    Article  PubMed  CAS  Google Scholar 

  43. Mazzieri R, D’Alessio S, Kenmoe RK et al (2006) An uncleavable uPAR mutant allows dissection of signaling pathways in uPA-dependent cell migration. Mol Biol Cell 17:367–378

    Article  PubMed  CAS  Google Scholar 

  44. Cheng JM, Lahad JP, Gray JW et al (2005) Emerging role of RAB GTPases in cancer and human disease. Cancer Res 65:2516–2519

    Article  PubMed  CAS  Google Scholar 

  45. Calvo A, Xiao N, Kang J et al (2002) Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Res 62:5325–5335

    PubMed  CAS  Google Scholar 

  46. Goldenring JR, Ray GS, Lee JR (1999) Rab11 in dysplasia of Barrett’s epithelia. Yale J Biol Med 72:113–120

    PubMed  CAS  Google Scholar 

  47. He H, Dai F, Yu L et al (2002) Identification and characterization of nine novel human small GTPases showing variable expression in liver cancer tissue. Gene Expr 10:231–242

    PubMed  CAS  Google Scholar 

  48. Pellagatti A, Esoof N, Watkins F et al (2004) Gene expression profiling in the myelodysplastic syndromes using microarray technology. Br J Haematol 125:576–583

    Article  PubMed  CAS  Google Scholar 

  49. Amillet JM, Ferbus D, Real FX et al (2006) Characterization of human Rab20 overexpressed in exocrine pancreatic carcinoma. Human Pathol 37:256–263

    Article  CAS  Google Scholar 

  50. Abba MC, Hu Y, Sun H et al (2005) Gene expression signature of estrogen receptor status in breast cancer. BMC Genomics 6:37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Deutsche Krebshilfe e.V., Germany (Grant No. 106 185). We thank Antje Zobjack, Annelie Zürich, and Andrea Lohse for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kotzsch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotzsch, M., Sieuwerts, A.M., Grosser, M. et al. Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: identification of rab31 as an independent prognostic factor. Breast Cancer Res Treat 111, 229–240 (2008). https://doi.org/10.1007/s10549-007-9782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9782-6

Keywords

Navigation