Skip to main content

Advertisement

Log in

The analog of cGAMP, c-di-AMP, activates STING mediated cell death pathway in estrogen-receptor negative breast cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Immune adaptor protein like STING/MITA regulate innate immune response and plays a critical role in inflammation in the tumor microenvironment and regulation of metastasis including breast cancer. Chromosomal instability in highly metastatic cells releases fragmented chromosomal parts in the cytoplasm, hence the activation of STING via an increased level of cyclic dinucleotides (cDNs) synthesized by cGMP-AMP synthase (cGAS). Cyclic dinucleotides 2’ 3’-cGAMP and it's analog can potentially activate STING mediated pathways leading to nuclear translocation of p65 and IRF-3 and transcription of inflammatory genes. The differential modulation of STING pathway via 2’ 3’-cGAMP and its analog and its implication in breast tumorigenesis is still not well explored. In the current study, we demonstrated that c-di-AMP can activate type-1 IFN response in ER negative breast cancer cell lines which correlate with STING expression. c-di-AMP binds to STING and activates downstream IFN pathways in STING positive metastatic MDA-MB-231/MX-1 cells. Prolonged treatment of c-di-AMP induces cell death in STING positive metastatic MDA-MB-231/MX-1 cells mediated by IRF-3. c-di-AMP induces IRF-3 translocation to mitochondria and initiates Caspase-9 mediated cell death and inhibits clonogenicity of triple-negative breast cancer cells. This study suggests that c-di-AMP can activate and modulates STING pathway to induce mitochondrial mediated apoptosis in estrogen-receptor negative breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soysal SD, Tzankov A, Muenst SE (2015) Role of the tumor microenvironment in breast cancer. Pathobiol J Immunopathol Mol Cell Biol 82(3–4):142–152

    Article  CAS  Google Scholar 

  2. Sormendi S, Wielockx B (2018) Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front Immunol. https://doi.org/10.3389/fimmu.2018.00040/full

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sachet M, Liang YY, Oehler R (2019) The immune response to secondary necrotic cells. Apoptosis. https://doi.org/10.1007/s10495-017-1413-z

    Article  Google Scholar 

  4. Woo S-R, Corrales L, Gajewski TF (2015) Innate immune recognition of cancer. Annu Rev Immunol 33:445–474

    Article  CAS  Google Scholar 

  5. Weinberg SE, Sena LA, Chandel NS (2015) Mitochondria in the regulation of innate and adaptive immunity. Immunity 42(3):406–417

    Article  CAS  Google Scholar 

  6. Singh K, Sripada L, Lipatova A, Roy M, Prajapati P, Gohel D et al (2018) NLRX1 resides in mitochondrial RNA granules and regulates mitochondrial RNA processing and bioenergetic adaptation. Biochim Biophys Acta Mol Cell Res 1865:1260–1276

    Article  CAS  Google Scholar 

  7. Li A, Yi M, Qin S, Song Y, Chu Q, Wu K (2019) Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. https://doi.org/10.1186/s13045-019-0721-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Corrales L, McWhirter SM, Dubensky TW, Gajewski TF (2016) The host STING pathway at the interface of cancer and immunity. J Clin Invest 126(7):2404–2411

    Article  Google Scholar 

  9. Basit A, Cho M-G, Kim E-Y, Kwon D, Kang S-J, Lee J-H (2020) The cGAS/STING/TBK1/IRF3 innate immunity pathway maintains chromosomal stability through regulation of p21 levels. Exp Mol Med 52(4):643–657

    Article  CAS  Google Scholar 

  10. Medrano RFV, Hunger A, Mendonça SA, Barbuto JAM, Strauss BE (2017) Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget 8(41):71249–71284

    Article  Google Scholar 

  11. Lu C, Klement JD, Ibrahim ML, Xiao W, Redd PS, Nayak-Kapoor A et al (2019) Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J Immunother Cancer 7(1):157

    Article  Google Scholar 

  12. Fuertes MB, Woo S-R, Burnett B, Fu Y-X, Gajewski TF (2013) Type I interferon response and innate immune sensing of cancer. Trends Immunol 34(2):67–73

    Article  CAS  Google Scholar 

  13. Maimela NR, Liu S, Zhang Y (2018) Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J 22(17):1–13

    Google Scholar 

  14. Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X (2019) STING: a master regulator in the cancer-immunity cycle. Mol Cancer. https://doi.org/10.1186/s12943-019-1087-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Andrade WA, Firon A, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA et al (2016) Group B streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe 20(1):49–59

    Article  CAS  Google Scholar 

  16. Ma F, Li B, Liu SY, Iyer SS, Yu Y, Wu A, Cheng G (2015) Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J Immunol (Baltimore, Md.: 1950) 194(4):1545–1554. https://doi.org/10.4049/jimmunol.1402066

    Article  CAS  Google Scholar 

  17. Ablasser A, Hur S (2020) Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 21:17–29

    Article  CAS  Google Scholar 

  18. Archer KA, Durack J, Portnoy DA (2014) STING-dependent type I IFN production inhibits cell-mediated immunity to listeria monocytogenes. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1003861

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barker JR, Koestler BJ, Carpenter VK, Burdette DL, Waters CM, Vance RE et al (2013) STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during chlamydia trachomatis infection. mBio. https://doi.org/10.1128/mBio.00018-13

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ahn J, Barber GN (2019) STING signaling and host defense against microbial infection. Exp Mol Med 51(12):1–10

    Article  Google Scholar 

  21. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  Google Scholar 

  22. Tomar D, Singh R, Singh AK, Pandya CD, Singh R (2012) TRIM13 regulates ER stress induced autophagy and clonogenic ability of the cells. Biochim Biophys Acta—Mol Cell Res 1823(2):316–326

    Article  CAS  Google Scholar 

  23. Huber KVM, Olek KM, Müller AC, Soon Heng Tan C, Bennett KL, Colinge J et al (2015) Proteome-wide small molecule and metabolite interaction mapping. Nat Methods 12(11):1055–1057

    Article  CAS  Google Scholar 

  24. Bhatelia K, Singh A, Tomar D, Singh K, Sripada L, Chagtoo M et al (2014) Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death. Biochim Biophys Acta. https://doi.org/10.1016/j.bbadis.2013.11.006

    Article  PubMed  Google Scholar 

  25. Chattopadhyay S, Sen GC (2017) RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA): a new antiviral pathway. Protein Cell 8(3):165–168

    Article  CAS  Google Scholar 

  26. Sun F, Liu Z, Yang Z, Liu S, Guan W (2019) The emerging role of STING-dependent signaling on cell death. Immunol Res 67(2–3):290–296

    Article  CAS  Google Scholar 

  27. Vargas-Rondón N, Villegas VE, Rondón-Lagos M (2017) The role of chromosomal instability in cancer and therapeutic responses. Cancers. https://doi.org/10.3390/cancers10010004

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa407

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, Jacob LS, Patwa R, Shah H, Xu K, Cross JR, Massagué J (2020) Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. https://doi.org/10.1038/nature18268

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang M, Lee AV, Rosen JM (2017) The cellular origin and evolution of breast cancer. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a027128

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL et al (2018) Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol Cell 71(5):745-760.e5

    Article  CAS  Google Scholar 

  32. Su T, Zhang Y, Valerie K, Wang X-Y, Lin S, Zhu G (2019) STING activation in cancer immunotherapy. Theranostics 9(25):7759–7771

    Article  CAS  Google Scholar 

  33. Yanai H, Chiba S, Hangai S, Kometani K, Inoue A, Kimura Y et al (2018) Revisiting the role of IRF3 in inflammation and immunity by conditional and specifically targeted gene ablation in mice. Proc Natl Acad Sci 115(20):5253–5258

    Article  CAS  Google Scholar 

  34. Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A et al (2017) Signalling strength determines proapoptotic functions of STING. Nat Commun 8(1):1–10

    Article  CAS  Google Scholar 

  35. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, Duran M, Pauli C, Shaw C, Chadalavada K, Rajasekhar VK, Genovese G, Venkatesan S, Birkbak NJ, McGranahan N, Lundquist M, LaPlant Q, Healey JH, Elemento O, Chung CH, Lee NY, Imielenski M, Nanjangud G, Pe’er D, Cleveland DW, Powell SN, Lammerding J, Swanton C, Cantley LC (2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553(7689):467–472. https://doi.org/10.1038/nature25432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, Jacob L, Patwa R, Shah H, Xu K, Cross JR, Massagué J (2016) Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533(7604):493–498. https://doi.org/10.1038/nature18268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kwon J, Bakhoum SF (2020) The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov 10(1):26–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Department of Science and Technology, Govt. of India, Grant Number INT/Korea/P-39 to Prof. Rajesh Singh. Authors acknowledge the instrumentation facility at the Department of Biochemistry, The M. S. University of Baroda, Vadodara. Kritarth Singh received a Senior Research Fellowship from the University Grants Commission (UGC), Govt. of India. We also acknowledge DST FIST for providing an instrumentation facility for the work. Anjali Shinde received her fellowship from ICMR, India. Minal Mane received her fellowship from CSIR, Govt. of India. Dhruv Gohel received his fellowship from ICMR, India. Fatema Currim received her fellowship from INSPIRE, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiyani, H., Shinde, A., Roy, M. et al. The analog of cGAMP, c-di-AMP, activates STING mediated cell death pathway in estrogen-receptor negative breast cancer cells. Apoptosis 26, 293–306 (2021). https://doi.org/10.1007/s10495-021-01669-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-021-01669-x

Keywords

Navigation