Skip to main content

Advertisement

Log in

Mechanisms of acquired chemoresistance to 5-fluorouracil and tomudex: thymidylate synthase dependent and independent networks

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Thymidylate synthase (TS) over-expression is widely accepted as a major molecular mechanism responsible for 5-fluorouracil (5-FU) and tomudex (TDX) resistance. In this study, the importance of TS in 5-FU and TDX resistance was evaluated.

Methods

The sensitivity of TS-over-expressing 5-FU (3) and TDX (3) resistant cell lines to 5-FU and TDX was analysed. The cross-resistance between 5-FU and TDX resistant cell lines was determined. The relationship between p53 and NF-κB status and the sensitivity to 5-FU and TDX was evaluated.

Results

Compared to relevant parental sensitive cell lines, the 5-FU resistant cell lines were highly cross-resistant to TDX (over 20,000-fold). In contrast, over-expression of TS did not significantly confer 5-FU resistance on the TDX resistant cell lines (0.8- to 1.3-fold). Thymidine (20 μM) rescue induced TDX resistance in TDX sensitive cell lines (over 10,000-fold) but only moderately influenced 5-FU sensitivity in 5-FU sensitive cell lines (1.1- to 2.4-fold). Uridine moderately protected one cancer cell line (RKO) from 5-FU-induced, but not TDX-induced, cytotoxicity. NF-κB transfected MCF-7 and p53 knockout HCT116 cells were resistant to 5-FU (4.4- and 2.4-fold, respectively) but not to TDX. TS protein expression in NF-κB transfected and p53 knockout cell lines was comparable to the relevant parental cell lines.

Conclusion

In some cancer cell lines, TS-independent molecular events may play a key role in 5-FU resistance. Loss of p53 function and NF-κB over-expression may be involved in TS-independent 5-FU chemoresistance in some cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

5-FU:

5-Fluorouracil

dTMP:

Deoxythymidine monophosphate

dTTP:

Deoxythymidine triphosphate

dUMP:

Deoxyuridine monophosphate

dUTP:

Deoxyuridine triphosphate

FdUMP:

5-Fluorodeoxyuridine monophosphate

MTT:

Tetrazolium-based semiautomated colorimetric

NF-κB:

Nuclear factor-kappa B

TdR:

Thymidine

TDX:

Tomudex

TS:

Thymidylate synthase

Urd:

Uridine

References

  1. Boyer J, McLean EG, Aroori S, Wilson P, McCulla A, Carey PD, Longley DB, Johnston PG (2004) Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and irinotecan. Clin Cancer Res 10:2158–2167

    Article  PubMed  CAS  Google Scholar 

  2. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263–269

    Article  PubMed  CAS  Google Scholar 

  3. Chu E, Callender MA, Farrell MP, Schmitz JC (2003) Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol 52(Suppl 1):S80–S89

    Article  PubMed  CAS  Google Scholar 

  4. Codacci-Pisanelli G, Kralovanszky J, van der Wilt CL, Noordhuis P, Colofiore JR, Martin DS, Franchi F, Peters GJ (1997) Modulation of 5-fluorouracil in mice using uridine diphosphoglucose. Clin Cancer Res 3:309–315

    PubMed  CAS  Google Scholar 

  5. Copur S, Aiba K, Drake JC, Allegra CJ, Chu E (1995) Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem Pharmacol 49:1419–1426

    Article  PubMed  CAS  Google Scholar 

  6. Ishibiki Y, Kitajima M, Sakamoto K, Tomiki Y, Sakamoto S, Kamano T (2003) Intratumoural thymidylate synthase and dihydropyrimidine dehydrogenase activities are good predictors of 5-fluorouracil sensitivity in colorectal cancer. J Int Med Res 31:181–187

    PubMed  CAS  Google Scholar 

  7. Johnston PG, Behan KA, Allegra CJ, Drake JC (1995) Fluorouracil: active in ZD1694 (tomudex)-resistant cell lines with markedly elevated thymidylate synthase levels. J Natl Cancer Inst 87:1558–1559

    Article  PubMed  CAS  Google Scholar 

  8. Johnston PG, Benson AB, Catalano P, Rao MS, O’Dwyer PJ, Allegra CJ (2003) Thymidylate synthase protein expression in primary colorectal cancer: lack of correlation with outcome and response to fluorouracil in metastatic disease sites. J Clin Oncol 21:815–819

    Article  PubMed  CAS  Google Scholar 

  9. Johnston PG, Lenz HJ, Leichman CG, Danenberg KD, Allegra CJ, Danenberg PV, Leichman L (1995) Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 55:1407–1412

    PubMed  CAS  Google Scholar 

  10. Kufe DW, Major PP (1981) 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytotoxicity. J Biol Chem 256:9802–9805

    PubMed  CAS  Google Scholar 

  11. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  PubMed  CAS  Google Scholar 

  12. Lonn U, Lonn S (1986) DNA lesions in human neoplastic cells and cytotoxicity of 5-fluoropyrimidines. Cancer Res 46:3866–3870

    PubMed  CAS  Google Scholar 

  13. Maxwell PJ, Longley DB, Latif T, Boyer J, Allen W, Lynch M, McDermott U, Harkin DP, Allegra CJ, Johnston PG (2003) Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer Res 63:4602–4606

    PubMed  CAS  Google Scholar 

  14. Meyers M, Wagner MW, Hwang HS, Kinsella TJ, Boothman DA (2001) Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res 61:5193–5201

    PubMed  CAS  Google Scholar 

  15. Mirjolet JF, Barberi-Heyob M, Merlin JL, Marchal S, Etienne MC, Milano G, Bey P (1998) Thymidylate synthase expression and activity: relation to S-phase parameters and 5-fluorouracil sensitivity. Br J Cancer 78:62–68

    PubMed  CAS  Google Scholar 

  16. Mirjolet JF, Didelot C, Barberi-Heyob M, Merlin JL (2002) G(1)/S but not G(0)/G(1)cell fraction is related to 5-fluorouracil cytotoxicity. Cytometry 48:6–13

    Article  PubMed  CAS  Google Scholar 

  17. Pinedo HM, Peters GF (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6:1653–1664

    PubMed  CAS  Google Scholar 

  18. Plumb JA, Milroy R, Kaye SB (1989) Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res 49:4435–4440

    PubMed  CAS  Google Scholar 

  19. Popat S, Matakidou A, Houlston RS (2004) Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol 22:529–536

    Article  PubMed  CAS  Google Scholar 

  20. Pritchard DM, Watson AJ, Potten CS, Jackman AL, Hickman JA (1997) Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc Natl Acad Sci USA 94:1795–1799

    Article  PubMed  CAS  Google Scholar 

  21. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB, Danenberg PV (2000) Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 6:1322–1327

    PubMed  CAS  Google Scholar 

  22. Sobrero A, Kerr D, Glimelius B, Van Cutsem E, Milano G, Pritchard DM, Rougier P, Aapro M (2000) New directions in the treatment of colorectal cancer: a look to the future. Eur J Cancer 36:559–566

    Article  PubMed  CAS  Google Scholar 

  23. Touroutoglou N, Pazdur R (1996) Thymidylate synthase inhibitors. Clin Cancer Res 2:227–243

    PubMed  CAS  Google Scholar 

  24. Van Cutsem E (1999) Raltitrexed (Tomudex) in combination treatment for colorectal cancer: new perspectives. Eur J Cancer 35(Suppl 1):S1–S2

    Article  PubMed  Google Scholar 

  25. van der Wilt CL, Backus HH, Smid K, Comijn L, Veerman G, Wouters D, Voorn DA, Priest DG, Bunni MA, Mitchell F, Jackman AL, Jansen G, Peters GJ (2001) Modulation of both endogenous folates and thymidine enhance the therapeutic efficacy of thymidylate synthase inhibitors. Cancer Res 61:3675–3681

    PubMed  Google Scholar 

  26. van Triest B, Pinedo HM, van Hensbergen Y, Smid K, Telleman F, Schoenmakers PS, van der Wilt CL, van Laar JA, Noordhuis P, Jansen G, Peters GJ (1999) Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin Cancer Res 5:643–654

    PubMed  Google Scholar 

  27. Vokes EE, Goh BC, Bertucci D, Vogelzang NJ, Mani S, Ratain MJ (1999) A phase I study of raltitrexed and paclitaxel given every 3 weeks to patients with solid tumors. Cancer 86:528–532

    Article  PubMed  CAS  Google Scholar 

  28. Wang W, Cassidy J (2003) Constitutive nuclear factor-kappa B mRNA, protein overexpression and enhanced DNA-binding activity in thymidylate synthase inhibitor-resistant tumour cells. Br J Cancer 88:624–629

    Article  PubMed  CAS  Google Scholar 

  29. Wang W, Cassidy J, O’Brien V, Ryan KM, Collie-Duguid E (2004) Mechanistic and predictive profiling of 5-fluorouracil resistance in human cancer cells. Cancer Res 64:8167–8176

    Article  PubMed  CAS  Google Scholar 

  30. Wang W, Collie-Duguid E, Cassidy J (2002) Cerivastatin enhances the cytotoxicity of 5-fluorouracil on chemosensitive and resistant colorectal cancer cell lines. FEBS Lett 531:415–420

    Article  PubMed  CAS  Google Scholar 

  31. Wang W, Marsh S, Cassidy J, McLeod HL (2001) Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Res 61:5505–5510

    PubMed  CAS  Google Scholar 

  32. Wang W, McLeod HL, Cassidy J (2003) Disulfiram-mediated inhibition of NF-kappaB activity enhances cytotoxicity of 5-fluorouracil in human colorectal cancer cell lines. Int J Cancer 104:504–511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by North Glasgow University Hospital NHS Trust West Research Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., McLeod, H.L., Cassidy, J. et al. Mechanisms of acquired chemoresistance to 5-fluorouracil and tomudex: thymidylate synthase dependent and independent networks. Cancer Chemother Pharmacol 59, 839–845 (2007). https://doi.org/10.1007/s00280-006-0384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0384-5

Keywords

Navigation