Skip to main content

Advertisement

Log in

Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: Multidrug resistance (MDR) continues to be a major obstacle for successful anticancer therapy. One of the principal factors implicated in MDR is the over expression of P-glycoprotein (Pgp), the product of the MDR1 gene. Methods: Here we explore the possibility of using the transcription inhibitor tetra-O-methyl nordihydroguaiaretic acid (M4N) to inhibit Sp1-regulated MDR1 gene expression and restore doxorubicin and paclitaxel sensitivity to multidrug resistant human cancer cells in vitro and in vivo. Results: We found that M4N acted synergistically with doxorubicin and paclitaxel in inhibiting the growth of the cells in culture allowing significant dose reductions of both drugs. We observed no such synergism when M4N was used in combination with cisplatin, another chemotherapeutic agent, but not a Pgp substrate, as analyzed by the combination index and isobologram methods. Analysis of MDR1 mRNA and Pgp levels revealed that at sublethal doses, M4N inhibited MDR1 gene expression in the multidrug resistant NCI/ADR-RES cells and reversed the MDR phenotype as measured by Rhodamine-123 retention. In addition, M4N was found to inhibit doxorubicin-induced MDR1 gene expression in drug sensitive MCF-7 breast cancer cells. Conclusions: M4N and maltose-tri-O-methyl nordihydroguaiaretic acid (maltose-M3N), a water-soluble derivative of NDGA, were also able to reverse the MDR phenotype of the tumor cells in a xenograft model system and combination therapy with M4N or maltose-M3N and paclitaxel was effective at inhibiting growth of these tumors in nude mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  PubMed  CAS  Google Scholar 

  2. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  PubMed  CAS  Google Scholar 

  3. Abal M, Andreu JM, Barasoain I (2003) Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets 3:193–203

    Article  PubMed  CAS  Google Scholar 

  4. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:159–165

    PubMed  Google Scholar 

  5. Haus-Cohen M, Assaraf YG, Binyamin L, Benhar I, Reiter Y (2004) Disruption of P-glycoprotein anticancer drug efflux activity by a small recombinant single-chain Fv antibody fragment targeted to an extracellular epitope. Int J Cancer 109:750–758

    Article  PubMed  CAS  Google Scholar 

  6. Kang H, Fisher MH, Xu D, Miyamoto YJ, Marchand A, Van Aerschot A, Herdewijn P, Juliano RL (2004) Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Res 32:4411–4419

    Article  PubMed  CAS  Google Scholar 

  7. Nagata J, Kijima H, Hatanaka H, Asai S, Miyachi H, Abe Y, Yamazaki H, Nakamura M, Watanabe N, Mine T, Kondo T, Scanlon KJ, Ueyama Y (2002) Reversal of drug resistance using hammerhead ribozymes against multidrug resistance-associated protein and multidrug resistance 1 gene. Int J Oncol 21:1021–1026

    PubMed  CAS  Google Scholar 

  8. Xu D, Kang H, Fisher M, Juliano RL (2004) Strategies for inhibition of MDR1 gene expression. Mol Pharmacol 66:268–275

    Article  PubMed  CAS  Google Scholar 

  9. Park R, Chang C-C, Liang Y-C, Chung Y, henry RA, Lin E, Mold De, Huang RCC (2005) Systemic treatment with tetra-O-methyl nordihydroguaiaretic acid suppresses the growth of human xenograft tumors. Clin Cancer Res 11:4601–4609

    Article  PubMed  CAS  Google Scholar 

  10. Lin E (2003) The prospect of tetra-O-methyl nordihydroguaiaretic acid (M4N) as a systemically delivered chemotherapeutic agent. M.Sc. thesis, Johns Hopkins University

  11. Data on file, Erimos Pharmaceutical, LLC, Raleigh, North Carolina

  12. Chang CC, Heller JD, Kuo J, Huang RC (2004) Tetra-O-methyl nordihydroguaiaretic acid induces growth arrest and cellular apoptosis by inhibiting Cdc2 and survivin expression. Proc Natl Acad Sci USA 101:13239–13244

    Article  PubMed  CAS  Google Scholar 

  13. Heller JD, Kuo J, Wu TC, Kast WM, Huang RC (2001) Tetra-O-methyl nordihydroguaiaretic acid induces G2 arrest in mammalian cells and exhibits tumoricidal activity in vivo. Cancer Res 61:5499–5504

    PubMed  CAS  Google Scholar 

  14. Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Weil MA, Belien JA, van Diest PJ, van der Wall E (2005) Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol 206:291–304

    Article  PubMed  CAS  Google Scholar 

  15. Scotto KW (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22:7496–7511

    Article  PubMed  CAS  Google Scholar 

  16. Adams S, Robbins F-M, Chen D, Wagage D, Holbeck SL, Morse III HC, Stroncek D, Marincola FM (2005) HLA class I and II genotype of the NCI-60 cell lines. J Transl Med 3:11–18

    Article  PubMed  Google Scholar 

  17. Hwu JR, Tseng WN, Gnabre J, Giza P, Huang RC (1998) Antiviral activities of methylated nordihydroguaiaretic acids. 1. Synthesis, structure identification, and inhibition of tat-regulated HIV transactivation. J Med Chem 41:2994–3000

    Article  PubMed  CAS  Google Scholar 

  18. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  19. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  20. Chang TT, Chou TC (2000) Rational approach to the clinical protocol design for drug combinations: a review. Acta Paediatr Taiwan 41:294–302

    PubMed  CAS  Google Scholar 

  21. Chou TC (1991) The median effect principle and the combination index for quantitation of synergism and antagonism. In: Chou TC, Rideout DC (eds) Synergism and antagonism in chemotherapy. Academic Press, San Diego, pp 61–102

    Google Scholar 

  22. Chou TC, Motzer RJ, Tong Y, Bosl GJ (1994) Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst 86:1517–1524

    Article  PubMed  CAS  Google Scholar 

  23. Chou TC, Martin N (2005) CompuSyn for Drug Combinations. ComboSyn, Inc. P.O. Box 1277, Paramus, NJ

  24. Chao TC, Chu Z, Tseng LM, Chiou TJ, Hsieh RK, Wang WS, Yen CC, Yang MH, Hsiao LT, Liu JH, Chen PM (2005) Paclitaxel in a novel formulation containing less Cremophor EL as first-line therapy for advanced breast cancer: a phase II trial. Invest New Drugs 23:171–177

    Article  PubMed  CAS  Google Scholar 

  25. Bissery MC, Guenard D, Gueritte-Voegelein F, Lavelle F (1991) Experimental antitumor activity of taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res 51:4845–4852

    PubMed  CAS  Google Scholar 

  26. McDaid HM, Lopez-Barcons L, Grossman A, Lia M, Keller S, Perez-Soler R, Horwitz SB (2005) Enhancement of the therapeutic efficacy of taxol by the mitogen-activated protein kinase kinase inhibitor CI-1040 in nude mice bearing human heterotransplants. Cancer Res 65:2854–2860

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi N, Li W, Banerjee D, Guan Y, Wada-Takahashi Y, Brennan MF, Chou TC, Scotto KW, Bertino JR (2002) Sequence-dependent synergistic cytotoxicity of ecteinascidin-743 and paclitaxel in human breast cancer cell lines in vitro and in vivo. Cancer Res 62:6909–6915

    PubMed  CAS  Google Scholar 

  28. Liao CH, Pan SL, Guh JH, Chang YL, Pai HC, Lin CH, Teng CM (2005) Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo. Carcinogenesis 26:968–975

    Article  PubMed  CAS  Google Scholar 

  29. Chang C-C (2005) Ph.D Thesis, Johns Hopkins University

  30. Gnabre JN, Brady JN, Clanton DJ, Ito Y, Dittmer J, Bates RB, Huang RC (1995) Inhibition of human immunodeficiency virus type 1 transcription and replication by DNA sequence-selective plant lignans. Proc Natl Acad Sci USA 92:11239–11243

    Article  PubMed  CAS  Google Scholar 

  31. Hwu JR, Tseng WN, Gnabre J, Giza P, Huang RC (1998) Antiviral activities of methylated nordihydroguaiaretic acids. 1. Synthesis, structure identification, and inhibition of tat-regulated HIV transactivation. J Med Chem 41:2994–3000

    Article  PubMed  CAS  Google Scholar 

  32. Craigo J, Callahan M, Huang RC, DeLucia AL (2000) Inhibition of human papillomavirus type 16 gene expression by nordihydroguaiaretic acid plant lignan derivatives. Antiviral Res 47:19–28

    Article  PubMed  CAS  Google Scholar 

  33. Chen H, Teng L, Li JN, Park R, Mold DE, Gnabre J, Hwu JR, Tseng WN, Huang RC (1998) Antiviral activities of methylated nordihydroguaiaretic acids. 2. Targeting herpes simplex virus replication by the mutation insensitive transcription inhibitor tetra-O-methyl-NDGA. J Med Chem 41:3001–3007

    Article  PubMed  CAS  Google Scholar 

  34. Richert ND, Aldwin L, Nitecki D, Gottesman MM, Pastan I (1988) Stability and covalent modification of P-glycoprotein in multidrug-resistant KB cells. Biochemistry 27:7607–7613

    Article  PubMed  CAS  Google Scholar 

  35. Petriz J, Gottesman MM, Aran JM (2004) An MDR-EGFP gene fusion allows for direct localization, function and stability assessment of p-glycoprotein. Curr Drug Deliv 1:43–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by grant P690-C25-2407 from Erimos Pharmaceuticals LLC to RCH. The authors would like to thank Theresa Landewe, Mingyu Xi, Chui Cheng and Amy Dinitz for their assistance. YC Liang is a visiting predoctoral fellow from Tunghai University, Taiwan, supported by the National Science Council, Taiwan, R.O.C. CIL and CFL are visiting predoctoral students from National Tsing Hua University, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Chih C. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Liang, YC., Klutz, A. et al. Reversal of multidrug resistance by two nordihydroguaiaretic acid derivatives, M4N and maltose-M3N, and their use in combination with doxorubicin or paclitaxel. Cancer Chemother Pharmacol 58, 640–653 (2006). https://doi.org/10.1007/s00280-006-0214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0214-9

Keywords

Navigation