Skip to main content

Advertisement

Log in

Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

For active specific immunotherapy of cancer patients, we designed the autologous virus–modified tumor cell vaccine ATV-NDV. The rationale of this vaccine is to link multiple tumor-associated antigens (TAAs) from individual patient-derived tumor cells with multiple danger signals (DS) derived from virus infection (dsRNA, HN, IFN-α). This allows activation of multiple innate immune responses (monocytes, dendritic cells, and NK cells) as well as adaptive immune responses (CD4 and CD8 memory T cells). Preexisting antitumor memory T cells from cancer patients could be activated by antitumor vaccination with ATV-NDV as seen by augmentation of antitumor memory delayed-type hypersensitivity (DTH) responses. In a variety of phase II vaccination studies, an optimal formulation of this vaccine could improve long-term survival beyond what is seen in conventional standard therapies. A new concept is presented which proposes that a certain threshold of antitumor immune memory plays an important role (1) in the control of residual tumor cells which remain after most therapies and (2) for long-term survival of treated cancer patients. This immune memory is T-cell based and most likely maintained by persisting TAAs from residual dormant tumor cells. Such immune memory was prominent in the bone marrow in animal tumor models as well as in cancer patients. Immunization with a tumor vaccine in which individual TAAs are combined with DS from virus infection appears to have a positive effect on antitumor immune memory and on patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13:114

    Article  CAS  PubMed  Google Scholar 

  2. Heicappell R, Schirrmacher V, von Hoegen P et al (1986) Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells, I: parameters for optimal therapeutic effects. Int J Cancer 37:569

    CAS  PubMed  Google Scholar 

  3. Plaksin D, Progador A, Vadai E et al (1994) Effective anti metastatic melanoma vaccination with tumor cells transfected with MHC genes and/or infected with Newcastle disease virus (NDV). Int J Cancer 59:796

    CAS  PubMed  Google Scholar 

  4. Shoham J, Hirsch R, Zakay-Rones Z et al (1990) Augmentation of tumor cell immunogenicity by viruses—an approach to specific immunotherapy of cancer. Nat Immunol Cell Growth Regul 9:165

    CAS  Google Scholar 

  5. Bier H, ArmonatG, Bier J et al (1989) Postoperative active-specific immunotherapy of lymph node micrometastasis in a Guinea pig tumor model. Otorhinopharyngology 51:197

    CAS  Google Scholar 

  6. Schirrmacher V, Ahlert T, Pröbstle T, Steiner HH, Herold-Mende C, Gerhards R, Hagmüller E (1998) Immunization with virus modified tumor cells. Semin Oncol 25:677

    CAS  PubMed  Google Scholar 

  7. Phillips RJ, Samson AC, Emmerson PT (1998) Nucleotide sequence of the 5′-terminus of Newcastle disease virus and assembly of the complete genomic sequence: agreement with the “rule of six.” Arch Virol 143:1993

    Article  CAS  PubMed  Google Scholar 

  8. Lorence RM, Roberts, MS, Groene, WS, Rabin H (2001) Replication-competent, oncolytic Newcastle disease virus for cancer therapy. In: Hernáiz Driever P, Rabkin SD (eds) Replication-competent viruses for cancer therapy monograph virology, vol 22. Karger, Basel, p 160

  9. Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, Goldberg S, Gross P, O’Neil JD, Groene WS, Roberts MS, Rabin H, Bamat MK, Lorence RM (2002) Phase I trial of intravenous administration of PV701, an oncolytic virus, patients with advanced solid cancers. J Clin Oncol 1 20:2251

    Article  Google Scholar 

  10. Schirrmacher V, Haas C, Bonifer R, Ahlert T, Gerhards R, Ertel C (1999) Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Therapy 6:63

    Article  CAS  PubMed  Google Scholar 

  11. Ertel C, Millar NS, Emmerson PT, Schirrmacher V, von Hoegen P (1993) Viral hemagglutinin augments peptide specific cytotoxic T-cell responses. Eur J Immunol 23:2592

    CAS  PubMed  Google Scholar 

  12. Zeng J, Fournier P, Schirrmacher V (2002) Induction of interferon α and TRAIL in human blood mononuclear cells by HN but not F protein of Newcastle disease virus. Virology 297:19

    Article  CAS  PubMed  Google Scholar 

  13. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappa B by toll-like receptor. Nature 413:732

    Article  CAS  PubMed  Google Scholar 

  14. Zeng J, Fournier P, Schirrmacher V (2002) Stimulation of human natural interferon-α response via paramyxo-virus hemagglutinin lectin-cell interaction. J Mol Med 80:443

    Article  CAS  PubMed  Google Scholar 

  15. Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192:219

    Article  CAS  PubMed  Google Scholar 

  16. Pulendran B, Banchereau J, Maraskovsky E, Maliszewski C (2001) Modulating the immune response with dendritic cells and their growth factors. Trends Immunol 22:41

    Article  CAS  PubMed  Google Scholar 

  17. Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF (2001) Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14:461

    Article  PubMed  Google Scholar 

  18. Sato K, Hida S, Takayanagi H, Yokochi T, Kayagaki N, Takeda K, Yagita H, Okumura K, Tanaka N, Taniguchi T, Ogasawara K (2001) Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur J Immunol 31:3138

    Article  CAS  PubMed  Google Scholar 

  19. Rogge L, Barberis-Maino L, Biffi M, Passini N, Presky DH, Gubler Sinigaglia E (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185:825

    Article  CAS  PubMed  Google Scholar 

  20. Washburn, B, Schirrmacher V (2002) Human tumor cell infection by Newcastle disease virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int J Oncol 21:85

    CAS  PubMed  Google Scholar 

  21. Haas C, Ertel C, Gerhards R, Schirrmacher V (1998) Introduction of adhesive and costimulatory immune functions into tumor cells by infection with Newcastle disease virus. Int J Oncol 13:1105

    CAS  PubMed  Google Scholar 

  22. Termeer CC, Schirrmacher V, Bröcker EB, Becker JC (2000) Newcastle disease virus infection induces B7-1/B7-2 independent T-cell costimulatory activity in human melanoma cells. Cancer Gene Ther 7:316

    Article  CAS  PubMed  Google Scholar 

  23. Schirrmacher V, Bai L, Umansky V, Yu L, Xing Y, Qian Z (2000) Newcastle disease virus activates macrophages for anti-tumor activity. Int J Oncol 16:363

    CAS  PubMed  Google Scholar 

  24. Washburn B, Weigand MA, Grosse-Wilde A, Janke M, Stahl H, Rieser E, Sprick MR, Schirrmacher V, Walczak H (2003) TNF-related apoptosis-inducing ligand mediates tumoricidal activity of human monocytes stimulated by Newcastle disease virus. J Immunol 170:1814

    CAS  PubMed  Google Scholar 

  25. Umansky V, Shatrov VA, Lehmann V, Schirrmacher V (1996) Induction of nitric oxide synthesis in macrophages by Newcastle disease virus is associated with activation of nuclear factor κB. Int Immunol 8:491

    CAS  PubMed  Google Scholar 

  26. Bai L, Koopmann J, Fiola C, Fournier P, Schirrmacher V (2002) Dendritic cells pulsed with viral oncolysates potently stimulate autologous T cells from cancer patients. Int J Oncol 21:685

    CAS  PubMed  Google Scholar 

  27. Lodolce JP, Burkett PR, Boone DL, Chien M, Ma A (2001) T cell-independent interleukin 15 R alpha signals are required for bystander proliferation. J Exp Med 194:1187

    Article  CAS  PubMed  Google Scholar 

  28. Schirrmacher V (2001) T-cell immunity in the induction and maintenance of a tumor dormant state. Semin Cancer Biol 11:285

    Article  CAS  PubMed  Google Scholar 

  29. Khazaie K, Prifti S, Beckhove P, Griesbach A, Russell S, Collins M, Schirrmacher V (1994) Persistence of dormant tumor cells in the bone marrow of tumor-cell-vaccinated mice correlates with long term immunological protection. Proc Natl Acad Sci U S A 91:7430

    CAS  PubMed  Google Scholar 

  30. Müller M, Gounari F, Prifti S, Hacker HJ, Schirrmacher V, Khazaie K (1998), Eb-lacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res 58:5439

    PubMed  Google Scholar 

  31. Schirrmacher V, Heicappell R (1987) Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells, II: establishment of specific systemic anti tumor immunity. Clin Exp Metastasis 5:147

    PubMed  Google Scholar 

  32. Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91:80

    Article  CAS  PubMed  Google Scholar 

  33. Pantel K, Otte M (2001) Occult micrometastasis: enrichment, identification and characterization of single disseminated tumor cells. Cancer Biol 11:327

    Article  CAS  Google Scholar 

  34. Veiga-Fernandes, Walter U, Bourgeois C, McLean A, Rocha B (2000) Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol 1:47

    Article  CAS  PubMed  Google Scholar 

  35. Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T cell differentiation: implications for vaccine development. Nature Rev 2:251

    Article  CAS  Google Scholar 

  36. Mahnke Y, Schirrmacher V (2003) A novel tumor model system for the study of long-term protective immunity and immune T cell memory. Cellular Immunol 221:89

    Article  CAS  Google Scholar 

  37. Mahnke Y, Schirrmacher V (2004) Characteristics of a potent tumor vaccine-induced secondary anti-tumor T cell response. Int J Oncol 24:1427

    CAS  PubMed  Google Scholar 

  38. Schirrmacher V, von Hoegen P (1993) Importance of tumor cell membrane integrity and viability for CTL activation by cancer vaccines. Vaccine Res 2:183

    Google Scholar 

  39. Ahlert T, Sauerbrei W, Bastert G, Ruhland S, Bartik B, Simiantonaki N, Schumacher J, Häcker B, Schumacher M, Schirrmacher V (1997) Tumor cell number and viability as quality and efficacy parameters of autologous virus modified cancer vaccines. J Clin Oncol 15:1354

    CAS  PubMed  Google Scholar 

  40. Von Hoegen P, Zawatzky R, Schirrmacher V (1990) Modification of tumor cells by a low dose of Newcastle disease virus, III: potentiation of tumor specific cytolytic T cell activity via induction of interferon α, β cell. Immunology 126:80

    Google Scholar 

  41. Feuerer M, Rocha M, Bai L, Umansky V, Solomayer EF, Bastert G, Diel IJ, Schirrmacher V (2001) Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer 92(1):96

    Article  CAS  PubMed  Google Scholar 

  42. Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Heep J, Oberniedermayr M, Schirrmacher V, Umansky V (2001) Therapy of human tumors in NOD/SCID mice with patient derived re-activated memory T cells from bone marrow. Nature Med 7:452

    Article  CAS  PubMed  Google Scholar 

  43. Bai L, Beckhove P, Feuerer M, Umansky V, Choi C, Schütz F, Solomayer E-F, Diel IJ, Schirrmacher V (2003) Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer 103:73

    Article  CAS  PubMed  Google Scholar 

  44. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi H, Sendo F, Shirai T, Kaji H, Kodama T, Saito H (1969) Modification in growth of transplantable rat tumors exposed to Friend virus. J Natl Cancer Inst 42:413

    CAS  PubMed  Google Scholar 

  46. Schirrmacher V, von Hoegen P, Schlag P, Liebrich W, Lehner B, Schumacher K, Ahlert T, Bastert G (1989) Active specific immunotherapy with autologous tumor cell vaccines modified by Newcastle disease virus: experimental and clinical studies. In: Schirrmacher V, Schwartz-Albiez R (eds) Cancer metastasis. Springer, Berlin Heidelberg New York, p 157

    Google Scholar 

  47. Ahlert T, Bastert G, Schirrmacher V (1989) Mamma- und Ovarialkarzinom mit autologen virusmodifizierten Tumorzellen, aktiv-spezifische Immuntherapie (ASI): Theorie, Praxis, Perspektiven.T.W (in German). Gynäkologie 2:359

    Google Scholar 

  48. Ahlert T, Gremm B, Kohler S, Rexin M, Hoffmann R, Terinde R, Rethfeld E, Schirrmacher V, Kaufmann M, Heinrich H, Meisenbacher G, Bastert G (1994) Aktiv spezifische Immuntherapie (ASI), 9: Arbeitsgespräch der klinischen Tumorimmunologie in der Gynäkologie (in German). In: Koldovski U, Kreienberg R (eds) Aktuelle Onkologie, band 79, vol 61. Munich, p 236

  49. Lehner B, Schlag P, Liebrich W, Schirrmacher V (1990) Postoperative active specific immunization in curatively resected colorectal cancer patients with virus-modified autologous tumor cell vaccine. Cancer Immunol Immunther 32:173

    CAS  Google Scholar 

  50. Manasterski M, Liebrich W, Möller P, Schirrmacher V, Schlag P (1990) Active specific immunotherapy in colorectal cancer and melanoma. In: R. Klapdor (ed) Recent results in tumor diagnosis and therapy. Zuckschwerdt Verlag, Munich, pp 499–504

    Google Scholar 

  51. Lehner B, Liebrich W, Mechtersheimer G, Schirrmacher V, Schlag P, Herfarth C (1989) Charakterisierung und erste Ergebnisse einer aktiven spezifischen Immuntherapie bei Patienten mit colorectalem Carcinom (in German). Langenbeck’s Arch Chir [Suppl Chir Forum], S513–S517

  52. Schlag P, Manasterski M, Gerneth T, Hohenberger P, Dueck M, Herfarth C, Liebrich W, Schirrmacher V (1992) Active specific immunotherapy with NDV modified autologous tumor cells following liver metastases resection in colorectal cancer: first evaluation of clinical response of a phase II trial. Cancer Immunol Immunother 35:325

    CAS  PubMed  Google Scholar 

  53. Pomer S, Thiele R, Staehler G, Löhrke H, Schirrmacher V (1995) Tumor vaccination in renal cell carcinoma with and without interleukin-2 (IL-2) as adjuvant: a clinical contribution to the development of effective active specific immunization. Urologe-A 34:215

    CAS  PubMed  Google Scholar 

  54. Pomer S, Schirrmacher V, Thiele R, Löhrke H, Staehler G (1995) Tumor response and 4 year survival data of patients with advanced renal cell carcinoma treated with autologous tumor vaccine and subcutaneous r-IL-2 and IFN-Alpha 2b. Int J Oncol 6:947

    Google Scholar 

  55. Ockert D, Schirrmacher V, Beck N, Stoelben E, Ahlert T, Flechtenmacher J, Hagmuller E, Bucheik R, Nagel M, Saeger HD (1996) Newcastle disease virus infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma. Clin Cancer Res 2:21

    CAS  PubMed  Google Scholar 

  56. Möbus V, Horn S, Stock M, Schirrmacher V (1993) Tumor cell vaccination for gynecological tumors. Hybridoma 12:543

    PubMed  Google Scholar 

  57. McCune CS, O’Donnell RW, Marquis DM, Saharrabudhe DM (1990) Renal cell carcinoma treated by vaccines for active specific immunotherapy: correlation of survival with skin testing by autologous tumor cells. Cancer Immunol Immunother 32:62

    CAS  PubMed  Google Scholar 

  58. Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S, Scheper RJ, Meijer CJ, Bloemena E, Ransom JH, Hanna MG Jr, Pinedo HM (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353:345

    Article  CAS  PubMed  Google Scholar 

  59. Abel U (2002) Grundlagen der Biometrie (in German). In: Beuth J (ed) Grundlagen der Komplementäronkologie. Hippokrates Verlag, Stuttgart, p 51

    Google Scholar 

  60. Bohle W, Schlag P, Liebrich W, Hohenberger P, Manasterski M, Möller P, Schirrmacher V (1990) Postoperative active specific immunization in colorectal cancer patients with virus-modified autologous tumor cell vaccine: first clinical results with tumor cell vaccines modified with live but avirulent Newcastle disease virus. Cancer 66:1517

    CAS  PubMed  Google Scholar 

  61. Liebrich W, Schlag P, Manasterski M, Lehner B, Stöhr M, Möller P, Schirrmacher V (1991) In vitro and clinical characterization of a Newcastle disease virus-modified autologous tumor cell vaccine for treatment of colorectal cancer patients. Eur J Cancer 27:703

    Article  CAS  PubMed  Google Scholar 

  62. Steiner HH, Bonsanto MM, Beckhove P, Brysch M, Schuele-Freyer R, Geletneky K, Kremer P, Golamrheza R, Bauer H, Kunze S, Schirrmacher V, Herold-Mende C (2004) Anti-tumor vaccination of patients with glioblastoma multiforme in a case-control study: feasibility, safety and clinical benefit. J Clin Oncol (in press)

    Google Scholar 

  63. Vermorken JB, Claessen AM, van Tinteren H et al (1999) Active specific immunotherapy for stage I and stage II human colon cancer: a randomized trial. Lancet 353:345

    Article  CAS  PubMed  Google Scholar 

  64. Liang W, Wang H, Sun TM, Yao WQ, Chen LL, Jin Y, Li CL, Meng FJ (2003) Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract. World J Gastroenterol 9(3):495

    PubMed  Google Scholar 

  65. Jocham D, Richter A, Hoffmann L, Iwig K, Fahlenkamp D, Zakrzewski G, Schmitt E, Dannenberg T, Lehmacher W, von Wietersheim J, Doehn C (2004) Adjuvant autologous renal tumor cell vaccine and risk of tumor progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 363:594

    Google Scholar 

  66. Ahlert T, Striffler H, Bastert G, Kaufmann M, Schirrmacher V (1989) Aktueller Stand gynäkologischer Studien zur aktiv-spezifischen Immuntherapie mit virusmodifizierten autologen Tumorzellen (in German). In: Melchert, Neuses, Wischink (eds) Aktuelle Onkologie, 60 Klinische Tumorimmunologie in der Gynäkologie, 8 Arbeitsgespräch Mannheim, 20–21 October 1989. S196–S204

Download references

Acknowledgements

I would like to acknowledge the help of many clinical colleagues without whom this translational research would not have been possible. While their names can be seen from the respective publications, I would like to thank here in particular P. Schlag and D. Ockert (colorectal carcinoma), T. Ahlert and G. Bastert (breast carcinoma), S. Pomer (renal carcinoma), V. Möbus (ovarian carcinoma), and H.H. Steiner and C. Herold-Mende (glioblastoma).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schirrmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirrmacher, V. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory. Cancer Immunol Immunother 54, 587–598 (2005). https://doi.org/10.1007/s00262-004-0602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0602-0

Keywords

Navigation