Skip to main content

Advertisement

Log in

Metastasis of breast cancer cells to the bone, lung, and lymph nodes promotes resistance to ionizing radiation

Metastasierung von Brustkrebszellen in Knochen, Lunge und Lymphknoten steigert die Resistenz gegenüber ionisierender Strahlung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Metastasis represents the leading cause of breast cancer deaths, necessitating strategies for its treatment. Although radiotherapy is employed for both primary and metastatic breast cancers, the difference in their ionizing radiation response remains incompletely understood. This study is the first to compare the radioresponse of a breast cancer cell line with its metastatic variants and report that such metastatic variants are more radioresistant.

Materials and methods

A luciferase expressing cell line was established from human basal-like breast adenocarcinoma MDA-MB-231 and underwent in vivo selections, whereby a cycle of inoculations into the left cardiac ventricle or the mammary fat pad of athymic nude mice, isolation of metastases to the bone, lung and lymph nodes visualized with bioluminescence imaging, and expansion of obtained cells was repeated twice or three times. The established metastatic cell lines were assessed for cell proliferation, wound healing, invasion, clonogenic survival, and apoptosis.

Results

The established metastatic cell lines possessed an increased proliferative potential in vivo and were more chemotactic, invasive, and resistant to X‑ray-induced clonogenic inactivation and apoptosis in vitro.

Conclusion

Breast cancer metastasis to the bone, lung, and lymph nodes promotes radioresistance.

Zusammenfassung

Hintergrund

Metastasierung ist die Hauptursache für den tödlichen Verlauf von Brustkrebserkrankungen. Darauf müssen spezifische Behandlungsstrategien ausgerichtet werden. Sowohl primäre als auch metastatische Brustkrebsarten können mit einer Strahlentherapie behandelt werden, allerdings sind die Unterschiede in der Reaktion auf ionisierende Strahlung bis heute nicht vollständig verstanden. In dieser Studie wird zum ersten Mal die Strahlenantwort einer Brustkrebszelllinie mit der ihrer metastatischen Varianten verglichen und die erhöhte Strahlenresistenz der metastatischen Varianten gezeigt.

Material und Methoden

Eine Luciferase-exprimierende Zelllinie wurde aus humanen basaloiden Brustadenokarzinomen MDA-MB-231 etabliert und in zwei oder drei Zyklen in vivo selektiert. Dabei wurden die Zellen entweder in den linken Herzventrikel oder in das Fettgewebe der Brust athymischer Nacktmäuse inokuliert. Die durch Biolumineszenz sichtbar gemachten Metastasen wurden aus Knochen, Lunge und Lymphknoten isoliert und expandiert. Die etablierten metastatischen Zelllinien wurden auf Zellproliferation, Wundheilung, Invasion, Klonüberleben und Apoptose getestet.

Ergebnisse

Die etablierten metastatischen Zelllinien wiesen in vivo ein gesteigertes proliferatives Potenzial auf. In vitro zeigten sie erhöhte chemotaktische und invasive Aktivität, zudem besaßen sie eine erhöhte Resistenz gegen röntgenstrahleninduzierte klonogene Inaktivierung und Apoptose.

Schlussfolgerung

Metastasen in Knochen, Lunge und Lymphknoten erhöhen die Strahlenresistenz von Brustkrebs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

BW:

Body weight

D 10 :

10% Survival dose

DMF:

Dose modifying factor

ER:

Estrogen receptor

FBS:

Fetal bovine serum

MCF7:

Michigan Cancer Foundation-7

Pg:

Progesterone receptor

SD:

Standard deviations

T D :

Doubling time

TdT:

Terminal deoxynucleotidyl transferase

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling

References

  1. Blows FM, Driver KE, Schmidt MK et al (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7:e1000279

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  3. Rouzier R, Perou CM, Symmans WF et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685

    Article  CAS  PubMed  Google Scholar 

  4. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  5. Rodriguez-Pinilla SM, Sarrio D, Honrado E et al (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12:1533–1539

    Article  CAS  PubMed  Google Scholar 

  6. Nalwoga H, Arnes JB, Wabinga H, Akslen LA (2010) Expression of aldehyde dehydrogenase 1 (ALDH1) is associated with basal-like markers and features of aggressive tumours in African breast cancer. Br J Cancer 102:369–375

    Article  CAS  PubMed  Google Scholar 

  7. Rantanen V, Grénman S, Kulmala J, Jaakkola M, Lakkala T, Sajantila A et al (1995) Characterization and radiosensitivity of UT-EC-2A and UT-EC-2B, two new highly radiosensitive endometrial cancer cell lines derived from a primary and metastatic tumor of the same patient. Gynecol Oncol 56:53–62

    Article  CAS  PubMed  Google Scholar 

  8. Huerta S, Heinzerling JH, Anguiano-Hernandez YM et al (2007) Modification of gene products involved in resistance to apoptosis in metastatic colon cancer cells: roles of Fas, Apaf-1, NFkappaB, IAPs, Smac/DIABLO, and AIF. J Surg Res 142:184–194

    Article  CAS  PubMed  Google Scholar 

  9. Cai K, Mulatz K, Ard R, Nguyen T, Gee SH (2014) Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion. BMC Cancer 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  10. van den Aardweg GJ, Naus NC, Verhoeven AC, de Klein A, Luyten GP (2002) Cellular radiosensitivity of primary and metastatic human uveal melanoma cell lines. Invest Ophthalmol Vis Sci 43:2561–2565

    PubMed  Google Scholar 

  11. Feyer PC, Steingraeber M (2012) Radiotherapy of bone metastasis in breast cancer patients – current approaches. Breast Care 7:108–112

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jaboin JJ, Ferraro DJ, DeWees TA et al (2013) Survival following gamma knife radiosurgery for brain metastasis from breast cancer. Radiat Oncol 8:131

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee SS, Ahn JH, Kim MK et al (2008) Brain metastases in breast cancer: prognostic factors and management. Breast Cancer Res Treat 111:523–530

    Article  PubMed  Google Scholar 

  14. Steinauer K, Gross MW, Huang DJ, Eppenberger-Castori S, Guth U (2014) Radiotherapy in patients with distant metastatic breast cancer. Radiat Oncol 9:126

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cailleau R, Young R, Olive M, Reeves WJ Jr (1974) Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 53:661–674

    Article  CAS  PubMed  Google Scholar 

  16. Camp JT, Elloumi F, Roman-Perez E et al (2011) Interactions with fibroblasts are distinct in basal-like and luminal breast cancers. Mol. Cancer Res 9:3–13

    CAS  Google Scholar 

  17. Brooks SC, Locke ER, Soule HD (1973) Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248:6251–6253

    CAS  PubMed  Google Scholar 

  18. Subik K, Lee JF, Baxter L et al (2010) The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer 4:35–41

    PubMed  PubMed Central  Google Scholar 

  19. Minn AJ, Kang Y, Serganova I et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hackl C, Man S, Francia G, Milsom C, Xu P, Kerbel RS (2013) Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut 62:259–271

    Article  PubMed  Google Scholar 

  21. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  CAS  PubMed  Google Scholar 

  22. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of alamar blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22:1304–1309

    Article  CAS  PubMed  Google Scholar 

  23. Riou P, Saffroy R, Chenailler C et al (2006) Expression of T‑cadherin in tumor cells influences invasive potential of human hepatocellular carcinoma. FASEB J 20:2291–2301

    Article  CAS  PubMed  Google Scholar 

  24. Hamada N, Hara T, Omura-Minamisawa M et al (2008) The survival of heavy ion-irradiated Bcl-2 overexpressing radioresistant tumor cells and their progeny. Cancer Lett 268:76–81

    Article  CAS  PubMed  Google Scholar 

  25. Hara T, Omura-Minamisawa M, Kang Y, Cheng C, Inoue T (2008) Flavopiridol potentiates the cytotoxic effects of radiation in radioresistant tumor cells in which p53 is mutated or Bcl-2 is overexpressed. Int J Radiat Oncol Biol Phys 71:1485–1495

    Article  CAS  PubMed  Google Scholar 

  26. Hamada N, Ni M, Funayama T, Sakashita T, Kobayashi Y (2008) Temporally distinct response of irradiated normal human fibroblasts and their bystander cells to energetic heavy ions. Mutat Res 639:35–44

    Article  CAS  PubMed  Google Scholar 

  27. Chen J, Gallo KA (2012) MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res 72:4130–4140

    Article  CAS  PubMed  Google Scholar 

  28. Luker KE, Luker GD (2006) Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 238:30–41

    Article  CAS  PubMed  Google Scholar 

  29. Banyard J, Chung I, Migliozzi M et al (2014) Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer. BMC Cancer 14:387

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR (2002) Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res 62:3298–3307

    CAS  PubMed  Google Scholar 

  31. Barone I, Catalano S, Gelsomino L et al (2012) Leptin mediates tumor-stromal interactions that promote the invasive growth of breast cancer cells. Cancer Res 72:1416–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Domink F, Carsten B, Gerhard O, Volker D, Naujokat C (2008) Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. J Cell Biochem 10:270–283

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Soile Tapio and Ms. Daniela Hladik (Helmholtz Zentrum München, Munich, Germany) for their help in the German translation of the abstract.

Funding

This work was supported in part by a Grant-in-Aid for Scientific Research C (No. 23591844) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Hamada.

Ethics declarations

Conflict of interest

T. Hara, M. Iwadate, K. Tachibana, S. Waguri, S. Takenoshita and N. Hamada declare that they have no competing interests.

Caption Electronic Supplementary Material

66_2017_1165_MOESM1_ESM.pptx

Fig. S1 A flow diagram outlining the isolation of metastases. pGL4.5 cells that stably express luciferase were established from a human basal-like breast cancer cell line MDA-MB-231. pGL4.5 cells were inoculated into the mammary fat pad or the left cardiac ventricle of athymic nude mice. At 20–30 days after inoculation, D‑Luciferin-administered mice underwent bioluminescence imaging. Metastases to the bone, lung and lymph nodes were isolated, and cells were expanded

66_2017_1165_MOESM2_ESM.pptx

Fig. S2 A flow chart schematizing the establishment of metastatic cell lines from pGL4.5 cells by repetitive in vivo selections. pGL4.5 cells underwent injection into the mammary fat pad (MFP) or left ventricular cardiac injection (LVC). Metastases to the bone, lung and lymph nodes were isolated, and cells were expanded. With this first in vivo selection, three, five and four cell lines were obtained from metastases to the lymph nodes, lung and bone (data not shown). Of these, NLN0001, NLU0002 and NBOS0002 cells underwent the second in vivo selection, from which five, three and five cell lines were obtained, respectively (data not shown). From these, NLU0022 and NBOS0022 cells were inoculated into the left cardiac ventricle of five and six mice, respectively, for the third in vivo selection. Cells expanded from isolated lung metastases derived from NLU0022 in five mice were mixed, and named NLU0041 cells. Likewise, cells expanded from isolated bone metastases derived from NBOS0022 in six mice were mixed, and named NBOS0042 cells. For the data in Figs. 1, 2, 3, 4 and 5 and S3, pGL4.5, NLN0001, NLN0104, NLU0041 and NBOS0042 were used (highlighted with boxed characters in the schema)

66_2017_1165_MOESM3_ESM.docx

Fig. S3 Cell proliferation in vitro tested with cell counting and an Alamar Blue assay. a pGL4.5 (circles), NBOS0042 (squares), NLU0041 (diamonds) and NLN0104 (triangles) cells were counted at every 24–196 h after plating. Growth curves were fitted against the data for the cell numbers at 24–120 h after plating to the exponential equation y = a * exp (b * x), where y, x, a and b are the cell numbers, time in h, intercept and slope, respectively. Doubling time (T D) in h was calculated as ln (2 / b). b At every 24–120 h after plating, Alamar Blue was added and fluorescence was measured. For each of the pGL4.5 (black), NBOS0042 (medium grey), NLU0041 (grey) and NLN0104 (light grey) cells, the data for 48–120 h time points are presented as fold changes relative to the data for the 24 h time point, and fold changes represent the means and SD of five independent experiments with triplicate measurements

Table S1 Frequency of metastasis in pGL4.5 cells and its metastatic cell lines

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, T., Iwadate, M., Tachibana, K. et al. Metastasis of breast cancer cells to the bone, lung, and lymph nodes promotes resistance to ionizing radiation. Strahlenther Onkol 193, 848–855 (2017). https://doi.org/10.1007/s00066-017-1165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1165-2

Keywords

Schlüsselwörter

Navigation