Skip to main content
Log in

Rabit distal colon epithelium: II. Characterization of (Na+, K+, Cl)-cotransport and [3H]-bumetanide binding

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Loop diuretic-sensitive (Na+,K+,Cl)-cotransport activity was found to be present in basolateral membrane vesicles of surface and crypt cells of rabbit distal colon epithelium. The presence of grandients of all three ions was essential for optimal transport activity (Na+,K+) gradien-driven36Cl fluxes weree half-maximally inhibited by 0.14 μm bumetanide and 44 μm furosimide. While86Rb uptake rates showed hyperbolic dependencies on Na+ and K+ concentrations with Hill coefficients of 0.8 and 0.9, respectively, uptakes were sigmoidally related to the Cl concentration, Hill coefficient 1.8, indicating a 1 Na+: 1 K+:2 Cl stoichiometry of ion transport.

The interaction of putative (Na+, K+, Cl)-cotransport proteins with loop diuretics was studied from equilibrium-binding experiments using [3H]-bumetanide. The requirement for the simulataneous presence of Na+,K+, and Cl, saturability, reversibility, and specificity for diuretics suggest specific binding to the (Na+, K+, Cl)-cotransporter. [3H]-bumetanide recognizes a minimum of two classes of diuretic receptors sites. high-affinity (K D1=0.13 μm;B max1 =6.4 pmol/mg of protein) and low-affinity (K D2=34 μm;B max2=153 pmol/mg of protein) sites. The specific binding to the high-affinity receptor was found to be linearly competitive with Cl (K 1=60mm), whereas low-affinity sites seem to be unaffected by Cl. We have shown that only high-affinity [3H]-bumetanide binding correlates with transport inhibition raising questions on the physiological significance of diuretic receptor site heterogeneity observed in rabbit distal colon epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown C.D.A., Murer, H. 1985. Characterization of a Na∶K∶2Cl cotransport system in the apical membrane of a renal epithelial cell line (LLC/PK1).J. Membrane Biol. 87:131–139

    Google Scholar 

  2. Burnham, C., Karlish, S.J.D., Jørgensen, P.L. 1985. Identification and reconstitution of a Na+/K+/Cl cotransproter and K+ channel from luminal membranes of renal red outer medulla.Biochim. Biophys. Acta 821:461–469

    PubMed  Google Scholar 

  3. Cabantchik, Z.I., Knauf, P.A., Rothstein, A. 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes”.Biochim. Biophys. Acta 515:239–302

    PubMed  Google Scholar 

  4. Chou, T. 1976. Derivation and properties of Michaelis/Menten type and Hill type equations for reference ligands.J. Theor. Biol. 59:253–276

    PubMed  Google Scholar 

  5. DeMeyts, P., Roth, J. 1975. Cooperativity in ligand binding: A new graphic analysis.Biochem. Biophys. Res. Commun. 66:11118–11125

    Google Scholar 

  6. Ellory, J.C., Dunham, P.B., Logue, P.J., Stewart, G.W. 1982. Anion-dependent cation transport in erythrocytes.Phil. Trans. R. Soc. London B 299:483–495

    Google Scholar 

  7. Epstein, F.H., Silva, P. 1985. Na-K-Cl cotransport in chloride-transporting epithelia.Ann. NY Acad. Sci. 456:187–197

    PubMed  Google Scholar 

  8. Forbush, B. III., Palfrey, H.C. 1983. [3H] bumetanide binding to membranes isolated from dog kidney outer medulla.J. Biol. Chem. 258:11787–11792

    PubMed  Google Scholar 

  9. Frizzell, R.A., Schultz, S.G. 1979. Models of electrolyte absorption and secretion by gastrointestinal epithelia.Int. Rev. Physiol. 19:205–225

    PubMed  Google Scholar 

  10. Geck, P., Heinz, E. 1986. The Na-K-2Cl cotransport system.J. Membrane Biol. 91:97–105

    Google Scholar 

  11. Geck, P., Pfeiffer, B. 1985. Na++K++2Cl cotransport in animal cell-Its role in volume regulation.Ann. Ny Acad. Sci. 456:166–182

    PubMed  Google Scholar 

  12. Giesen-Crouse, E.M., McRoberts, J.A. 1987. Coordinate expression of piretanide receptors and Na, K+, CKl cotransport activity in Madin-Darby canine kidney cell mutants.J. Biol. Chem. 262:17393–17397

    PubMed  Google Scholar 

  13. Greger, R. 1981. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 390:38–43

    Google Scholar 

  14. Gunn, R.B. 1985. Bumetanide inhibition of anion exchange in human red blood cells.Biophys. J. 47:326a

    Google Scholar 

  15. Gustin, M.C., Goodman, D.B.P. 1981. Isolation of the brush-border membrane from the rabbit descending colon epithelium.J. Biol. Chem. 256:10651–10656

    PubMed  Google Scholar 

  16. Haas, M., Forbush, B., III. 1986. [3H] bumetanide binding to duck red cells. Correlation with inhibition of (Na+K+2Cl) co-transport.J. Biol. Chem. 261:8434–8441

    PubMed  Google Scholar 

  17. Haas, M., Forbush, B., III. 1987. Na,K,Cl-cotransport system: Characterization by bumetanide binding and photolabeling.Kidney Int. 32:S134-S140

    Google Scholar 

  18. Haas, M., Forbush, B., III. 1987. Photolabeling of a 150-kDa (Na+K+Cl) cotransport protein from dog kidney with a bumetanide analogue.Am. J. Physiol. 253:C243-C250

    PubMed  Google Scholar 

  19. Haas, M., McManus, T.J. 1983. Bumetanide inhibits (Na+K+2Cl) cotransport at a chloride site.Am. J. Physiol. 245:C235-C240

    PubMed  Google Scholar 

  20. Hannafin, J., Kinne-Saffran, E., Friedman, D., Kinne, R. 1983. Presence of a sodium-potassium chloride cotransport system in the rectal gland ofSqualus acanthias.J. Membrane Biol. 75:73–83

    Google Scholar 

  21. Heintze, K., Stewart, C.P., Frizzell, R.A. 1983. Sodium-dependent chloride secretion across rabbit descending colon.Am. J. Physiol. 244:G357-G365

    PubMed  Google Scholar 

  22. Heytler, P.G. 1979. Uncouplers of oxidative phosphorylation.Methods Enzymol. LV:462–472

    Google Scholar 

  23. Hoffmann, E.K. 1986. Anion transport systems in the plasma membrane of vertebrate cells.Biochim. Biophys. Acta 864:1–31

    PubMed  Google Scholar 

  24. Hoffmann, E.K., Schiodt, M., Dunham, P. 1986. The number of chloride-cation cotransport sites on Ehrlich ascites cells measured with [3H] bumetanide.Am. J. Physiol. 250:C688-C693

    PubMed  Google Scholar 

  25. Jørgensen, P.L., Petersen, J., Rees, W.D. 1984. Identification of a Na,K,Cl−1 cotransport protein ofM r 34,000 from kidney by photolabeling with [3H] bumetanide.Biochim. Biophys. Acta 775:105–110

    PubMed  Google Scholar 

  26. Kessler, M., Tannenbaum, V., Tannenbaum, C. 1978. A simple apparatus for performing short time uptake measurements in small volumes: Its application tod-glucose transport studies in brush border vesicles from rabbit jejunum.Biochim. Biophys. Acta 509:348–359

    PubMed  Google Scholar 

  27. Kinne, R., Hannafin, J.A., König, B. 1985. Role of the NaCl−KCl cotransport system in active chloride absorption and secretion.Ann. NY Acad. Sci. 456:198–206

    PubMed  Google Scholar 

  28. Kinne, R., Koenig, B., Hannafin, J., Kinne-Saffran, E., Scott, D.M., Zierold, K. 1985. The use of membrane vesicles to study the NaCl/KCl cotransporter involved in active chloride transport.Pfluegers Arch. 405:S101-S105

    Google Scholar 

  29. Kinsella, J.L., Aronson, P.S. 1981. Amiloride inhibition of the Na/H exchanger in renal microvillus membrane vesicles.Am. J. Physiol. 241:F374-F379

    PubMed  Google Scholar 

  30. Klotz, I.M. 1982. Number of receptor sites from Scatchard graphs: Facts and fantasies.Science 217:1247–1249

    PubMed  Google Scholar 

  31. Koenig, B., Ricapito, S., Kinne, R. 1983. Chloride transport in the thick ascending limb of Henle's loop: K dependence and stoichiometry of NaCl cotransport in plasma membrane vesicles.Pfluegers Arch. 399:173–179

    Google Scholar 

  32. Liedtke, C.M., Hopfer, U. 1982. Mechanisms of Cl translocation across small intestinal brush-border membrane. II. Demonstration of Cl−OH exchange and Cl conductance.Am. J. Physiol. 242:G272-G280

    PubMed  Google Scholar 

  33. Loftfield, R.B., Eigner, E.A. 1969. Molecular order of participation of inhibitors (or activators) in biological systems.Science 164:305–308

    PubMed  Google Scholar 

  34. Mercer, R.W., Hoffman, J.F. 1985. Bumetanide sensitive Na/K cotransport in ferret red blood cells.Biophys. J. 47:157a

    Google Scholar 

  35. Miyamoto, H., Ikehara, T., Yamaguchi, H., Hosokawa, K., Yonezu, T., Masuya, T. 1986. Kinetic mechanism of Na+,K+,Cl-cotransport as studied by Rb+ influx into HeLa cells: Effects of extracellular monovalent ions.J. Membrane Biol. 92:135–150

    Google Scholar 

  36. Owen, N.E., Prastein, M.L. 1985. Na/K/Cl cotransport in cultured human fibroblasts.J. Biol. Chem. 260:1445–1451

    PubMed  Google Scholar 

  37. Palfrey, H.C., Feit, P.W., Greengard, P. 1980. cAMP-stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics.Am. J. Physiol. 238:C139-C148

    PubMed  Google Scholar 

  38. Palfrey, H.C., Rao, M.C. 1983. Na/K/Cl cotransport and its regulation.J. Exp. Biol. 106:43–54

    PubMed  Google Scholar 

  39. Palfrey, H.C., Silva, P., Epstein, F.H. 1984. Sensitivity of cAMP-stimulated salt secretion in shark rectal gland to “loop” diuretics.Am. J. Physiol. 246:C242-C246

    PubMed  Google Scholar 

  40. Plass, H., Gridl, A., Turnheim, K. 1986. Absorption and secretion of potassium by rabbit descending colon.Pfluegers Arch. 406:509–519

    Google Scholar 

  41. Rugg, E.L., Simmons, N.L., Tivey, D.R. 1985. An investigation of [3H] bumetanide uptake in intact cultured renal epithelial cells (MDCK).J. Physiol. (London) 367:72P

    Google Scholar 

  42. Saier, M.H., Jr., Boyden, D.A. 1984. Mechanism-regulation and physiological significance of the loop diuretic sensitive NaCl/KKCl symport in animal cells.Mol. Cell Biochem. 59:11–32

    PubMed  Google Scholar 

  43. Segel, I.H. 1975. Enzyme Kinetics. New York, Wiley

    Google Scholar 

  44. Turner, R.J. 1983. Quantitative studies of cotransport systems: Models and vesicles.J. Membrane Biol. 76:1–15

    Google Scholar 

  45. Turner, R.J., George, J.N., Baum, B.J. 1986. Evidence for a Na+/K+/Cl cotransport system in basolateral membrane vesicles from the rabbit parotid.J. Membrane Biol. 94:143–152

    Google Scholar 

  46. Welsh, M.J., Smith, P.L., Fromm, M., Frizzell, R.A. 1982. Crypts are the site of intestinal third and electrolyte secretion.Science 218:1219–1221

    PubMed  Google Scholar 

  47. Wiener, H., Turnheim, K., Os, C.H., van. 1989. Rabbit distal colon epithelium: I. Isolation and characterization of basolateral plasma membrane vesicles from surface and crypt cells.J. Membrane Biol. 110:147–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiener, H., van Os, C.H. Rabit distal colon epithelium: II. Characterization of (Na+, K+, Cl)-cotransport and [3H]-bumetanide binding. J. Membrain Biol. 110, 163–174 (1989). https://doi.org/10.1007/BF01869471

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869471

Key Words

Navigation